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A large-Reynolds-number asymptotic solution of the Navier–Stokes equations is
sought for the motion of an axisymmetric vortex ring of small cross-section embedded
in a viscous incompressible fluid. In order to take account of the influence of elliptical
deformation of the core due to the self-induced strain, the method of matched
asymptotic expansions is extended to a higher order in a small parameter ε = (ν/Γ )1/2,
where ν is the kinematic viscosity of fluid and Γ is the circulation. Alternatively, ε
is regarded as a measure of the ratio of the core radius to the ring radius, and our
scheme is applicable also to the steady inviscid dynamics.

We establish a general formula for the translation speed of the ring valid up to third
order in ε. This is a natural extension of Fraenkel–Saffman’s first-order formula, and
reduces, if specialized to a particular distribution of vorticity in an inviscid fluid, to
Dyson’s third-order formula. Moreover, it is demonstrated, for a ring starting from an
infinitely thin circular loop of radius R0, that viscosity acts, at third order, to expand
the circles of stagnation points of radii Rs(t) and R̃s(t) relative to the laboratory
frame and a comoving frame respectively, and that of peak vorticity of radius Rp(t)

as Rs ≈ R0 + [2 log(4R0/
√
νt) + 1.4743424] νt/R0, R̃s ≈ R0 + 2.5902739 νt/R0, and

Rp ≈ R0 + 4.5902739 νt/R0. The growth of the radial centroid of vorticity, linear in
time, is also deduced. The results are compatible with the experimental results of
Sallet & Widmayer (1974) and Weigand & Gharib (1997).

The procedure of pursuing the higher-order asymptotics provides a clear picture
of the dynamics of a curved vortex tube; a vortex ring may be locally regarded as a
line of dipoles along the core centreline, with their axes in the propagating direction,
subjected to the self-induced flow field. The strength of the dipole depends not only
on the curvature but also on the location of the core centre, and therefore should
be specified at the initial instant. This specification removes an indeterminacy of the
first-order theory. We derive a new asymptotic development of the Biot-Savart law
for an arbitrary distribution of vorticity, which makes the non-local induction velocity
from the dipoles calculable at third order.

1. Introduction
Vortex rings are usually considered as invariant states in an inviscid fluid in which

the vortex lines are endowed with curvature which enables the rings to propagate.
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The study of the translation speed of vortex rings may be traced back to Helmholtz
(1858) and Kelvin (1867). Extending Kelvin’s result, Dyson (1893) (see also Fraenkel
1972) obtained the speed U of a thin axisymmetric vortex ring, steadily translating in
an inviscid incompressible fluid of infinite extent, up to third (virtually fourth) order
in a small parameter ε:
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, (1.1)

where Γ is the circulation, R0 is the ring radius, and ε = σ/R0 is the ratio of core radius
σ to R0. The assumption is made that ε� 1. The speed depends on the distribution of
vorticity, and, in this treatment, the one for which vorticity is proportional to distance
from the symmetric axis is selected. We consider Kelvin’s formula (the first two terms)
as the first order and the ε2-terms as the third. Kelvin’s formula corresponds to a
uniform distribution of vorticity, at leading order, in a circular core. The local flow
induced by the vortex ring consists not only of a uniform flow but also of a straining
field. The latter manifests itself at second order and deforms the core into an ellipse,
elongated in the propagating direction (Dyson 1893; Fraenkel 1972):
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where (r, θ) are local moving cylindrical coordinates about the core centre which will
be introduced in § 2. It is remarkable that the inclusion of the third-order term in
the propagating velocity achieves a significant improvement in approximation; (1.1)
compares well even with the exact value for the fat limit of Hill’s spherical vortex
(Hill 1894). In this limit, ε =

√
2 under a suitable normalization. As pointed out by

Fraenkel (1972), the velocity obtained from (1.1) with ε =
√

2 differs from the exact
value by an error of only about 5%. It may follow that Dyson’s formula for ε � 1
applies with reasonable accuracy to the whole family of Fraenkel–Norbury vortex
rings (0 < ε 6

√
2) (Norbury 1973). This surprising agreement encourages us to

explore a higher-order approximation of the velocity in more general circumstances.
For a stagnant core, the 1

4
in (1.1) is changed into 1

2
(Hicks 1885). Fraenkel (1970)

and Saffman (1970) generalized Kelvin’s formula to admit an arbitrary distribution
of vorticity:
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}
, (1.3)

where v is the local azimuthal velocity. The parameter σ̂ is the core radius for a
discrete distribution surrounded by an irrotational flow. For a localized but continuous
distribution of vorticity, the limit of σ̂ →∞ is to be taken.

Viscosity acts to diffuse vorticity, and the motion ceases to be steady. Its influence
on the travelling speed, at large Reynolds number, was first addressed by Tung &
Ting (1967). For the case where the vorticity is, at a virtual instant, a ‘δ-function’
concentrated on the circle of radius R0, Saffman (1970) (see also Callegari & Ting
1978) succeeded in deriving an explicit formula, valid up to O[(ν/Γ )1/2], as
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where ν is the kinematic viscosity, t is the time measured from the instant at which
the core is infinitely thin, and γ = 0.57721566 . . . is Euler’s constant. To obtain (1.4),
it suffices to introduce into (1.3) the local distribution of the Lamb–Oseen diffusing
vortex,

ω(r) =
Γ

4πνt
e−r

2/4νt, v(r) =
Γ

2πr
(1− e−r

2/4νt), (1.5)

where ω(r) is the local distribution of the toroidal vorticity. It is to be born in mind
that (1.5) possesses circular symmetry. Saffman paid little attention to the precise order
of error. Stanaway, Cantwell & Spalart (1988a, b) approached this by conducting a
direct numerical simulation of the Navier–Stokes equations for a single axisymmetric
vortex ring, at moderate Reynolds numbers, 0.001 6 ReΓ 6 1000, where ReΓ = Γ/ν.
They claimed that the error is smaller than indicated by (1.4); their results suggested
that it is O

[
(νt/R2

0) log(νt/R2
0)
]
, or third order, in common with the inviscid solution.

The non-existence of the limit ν → 0 of (1.4) pertains to the specific concentrated
distribution of vorticity at t = 0. If the initial distribution is replaced by a core of
finite thickness, the limit of ν → 0 recovers the inviscid result for the corresponding
steady vortex ring. The inviscid formula is accessible by application of the double
limit ν → 0, t→∞, in this order, to the solution of the Navier–Stokes equations. The
extent to which viscosity affects the motion depends on the time scale of vorticity
diffusion, relative to the time in which the ring travels a few diameters, and thus on
the Reynolds number. Comprehensive lists of theories of the existence and motion
of vortex rings may be found in the textbook by Saffman (1992) and the article by
Shariff & Leonard (1992).

Recent direct numerical simulations of fully developed turbulence have revealed
that the small-scale structure is dominated by high-vorticity regions concentrated in
tube-like structures (Siggia 1981; Kerr 1985; Hosokawa & Yamamoto 1989; She,
Jackson & Orszag 1990; Douady, Couder & Brachet 1991; Kida & Ohkitani 1992).
Though they occupy a small fraction of the total volume, they are responsible for a
much larger fraction of viscous dissipation. Motivated by the intriguing pattern of the
dissipation field, Moffatt, Kida & Ohkitani (1994) developed a large-Reynolds-number
asymptotic theory to solve the Navier–Stokes equations for a steady stretched vortex
tube subjected to uniform non-axisymmetric irrotational strain. The higher-order
asymptotics satisfactorily mimic the fine structure of the dissipation field previously
obtained by numerical computation (Kida & Ohkitani 1992).

This success provides a convincing demonstration of the advantages that an asymp-
totic theory offers. An asymptotic solution, usually including only a few parameters,
can be efficiently evaluated and is more and more accurate as the Reynolds num-
ber is increased. By contrast, numerical simulation is cost- and time-consuming and
becomes impractical at large Reynolds numbers. Once the asymptotic solution is ob-
tained, detailed information on the vorticity, strain and pressure field, is immediately
accessible.

For the related, though unsteady, planar problem, the asymptotic expansions for a
strained diffusing vortex were initiated by Ting & Tung (1965). By an introduction
of strained coordinates, combined with higher-order expansions, Jiménez, Moffatt &
Vasco (1996) made a substantial improvement in the approximation. Prochazka &
Pullin (1998) achieved a further improvement, in the equivalent three-dimensional
problem, by refining the strained coordinates. The basic procedure is similar in both
two and three dimensions. At leading order, the Burgers and the Lamb–Oseen vor-
tices, both having circular cores, are obtained in the three- and two-dimensional
problems respectively. The viscosity plays the part of selecting the realized vorticity
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profile, Gaussian distributions, as represented by (1.5). At the next order (O(ν/Γ )), a
quadrupole component emerges, reflecting an elliptical vorticity distribution. The dis-
tinguishing feature is that the major axis of the ellipse is aligned at 45◦ to the principal
axis of the external stain (see also Bajer & Moffatt 1998 for a different approach).

In practical flows, the cross-section of the core of a vortex ring is never exactly of
circular shape, due to the local straining field that it induces. It is conceivable that
the strained cross-section of a propagating vortex ring reflects an equilibrium between
self-induced strain and viscous diffusion. The aim of the present investigation is to
elucidate the structure of this strained core and its influence on the motion of an
axisymmetric vortex ring. As a first step, we develop, in this paper, a framework to
handle this problem. We construct a general formula for the third-order correction to
the first-order translation speed (1.3). In addition, insight is gained into how viscosity
affects the radial drift of vorticity. Our formula is supported by the numerical
observation of Stanaway et al. (1988a, b) that the correction to Saffman’s formula is
O[(νt/R2

0) log(νt/R2
0)] rather than Saffman’s own estimate (1.4). A similar expansion

of ring radius is realized in the experiments of Sallet & Widmayer (1974) and
Weigand & Gharib (1997). With this agreement, we have come to a belief that our
theory, envisaged as high-Reynolds-number asymptotics, might be in fact applicable
at moderate Reynolds numbers.

As long as we stay at first order, the method of Lamb’s transformation is quite
efficient to calculate the speed of thin axisymmetric vortex rings (Lamb 1932; Saffman
1992). Notably, it allows us to sidestep the solution for the flow field. For a system-
atic treatment of higher-order fields, however, the method of matched asymptotic
expansions, in powers of ε, is essential. It has been previously developed to derive the
velocity of a slender curved vortex tube in a fluid both with and without viscosity
(Tung & Ting 1967; Widnall, Bliss & Zalay 1971; Callegari & Ting 1978; Klein
& Majda 1991a, b; Ting & Klein 1991). The second-order curvature effect comes
into play for a vortex tube with axial flow in the core (Moore & Saffman 1972),
and this method has been limited to second order (Fukumoto & Miyazaki 1991).
The self-induced strain of a vortex ring makes its appearance at second order, and
influences the translation speed only at the third order. We need to extend asymptotic
expansions to a higher order to obtain the third-order velocity of a vortex ring. We
begin with scrutiny of the first-order theory. A few ambiguous steps are encountered.
An understanding of these provides a clue to reaching a better formulation of the
perturbation scheme. The previous theories deal exclusively with the inner field. In
contrast, the improved formulation rests upon a more precise knowledge of the outer
flow, and thus renders the inner and outer expansions systematic.

In § 2, we state the general problem of the matched asymptotic expansions. The
existing asymptotic formula for the potential flow associated with a circular vortex
loop is not sufficient to carry through our programme. In order to work out the
correct inner limit of the outer solution, we devise, in § 3, a technique to produce
a systematic asymptotic expression of the Biot-Savart integral accommodating an
arbitrary vorticity distribution. In § 4, the inner expansions are re-examined at first
order and are extended to second order. Emphasis is put on the boundary conditions
and their relevance to the strength of the dipole. Based on these, we demonstrate
in § 5 that the radius of the loop consisting of the stagnation points in the core,
when viewed from the frame moving with the core, grows linearly in time owing to
the action of viscosity. The analysis is extended to expansion laws for the circles of
stagnation points relative to the laboratory coordinates, peak vorticity and the radial
vorticity centroid. Comments are given on the early-time asymptotic theory developed
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by Wang, Chu & Chang (1994). We point out that their numerical results on radial
expansion seem to be in contradiction with ours. In § 6, satisfactory comparison of
the asymptotic solution is made with some experimental measurements and direct
numerical simulations of trajectories of a laminar vortex ring. Thereafter, we establish
in § 7 a general formula for the translation velocity of a vortex ring. In § 8, an
equation governing the temporal evolution of the axisymmetric vorticity at second
order is derived from the solvability condition. An integral representation of the
exact solution is given, with which the formula of the preceding section is closed.
The last section (§ 9) is devoted to a summary and conclusions. Our procedure of
pursuing higher-order asymptotics reveals the significance of the dipoles distributed
along the core centreline and oriented in the propagating direction. It turns out that
their strength needs to be prescribed at an initial instant, which remedies the problem
of undetermined constants at O(ε). As a by-product, a clear interpretation is provided
of the general mechanism of the self-induced motion of a curved vortex tube.

The present study provides a general treatment. However, it is worthwhile to revisit
the specific example of Dyson’s inviscid vortex ring, which will be helpful in gaining
a deeper insight into the nonlinear mechanism from the viewpoint of our framework.
The manipulation of this high-order asymptotic solution also serves as a convincing
check on the correctness of our general formulae (7.16) and (7.18) for the translation
velocity. The detail will be reported in a companion paper (Fukumoto 2000).

2. Formulation of the matched asymptotic expansions
Consider an axisymmetric vortex ring of circulation Γ moving in an infinite expanse

of viscous fluid with kinematic viscosity ν. We suppose that the circulation Reynolds
number ReΓ is very large:

ReΓ = Γ/ν � 1. (2.1)

Two length scales are available, namely measures of the core radius σ and the ring
radius R0.

Suppose that their ratio σ/R0 is very small. We focus attention on the translational
motion of a ‘quasi-steady’ core. This means that we exclude stable or unstable wavy
motion and fast core-area waves. Then, according to (1.1), the time scale in question
is of order R0/(Γ/R0) = R2

0/Γ . Denoting the initial value of σ by σ0, the core spreads
over this time to be of order σ ∼ σ0 + (νt)1/2 ∼ σ0 + (ν/Γ )1/2R0. If the circulation
Reynolds number is so large that ReΓ � (R0/σ0)

2, then on this time scale viscous
diffusion of vorticity may be disregarded and the problem is reduced to steady Euler
dynamics. Otherwise, we need to seek the solution of the Navier–Stokes equations
with time-dependence retained. Thus our assumption of slenderness requires that the
relevant small parameter ε(� 1) is

ε =

{
σ0/R0 if ReΓ � (R0/σ0)

2√
ν/Γ if ReΓ . (R0/σ0)

2.
(2.2)

The analysis that follows is applicable to inviscid as well as viscous dynamics.
Choose cylindrical coordinates (ρ, φ, z) with the z-axis along the axis of symmetry

and φ along the vortex lines as shown in figure 1. We consider an axisymmetric
distribution of vorticity ω localized about the circle (ρ, z) = (R(t), Z(t)):

ω = ζ(ρ, z)eφ, (2.3)

where eφ is the unit vector in the azimuthal direction. The Stokes streamfunction ψ
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Figure 1. The meridional cross-section of a vortex ring and the coordinate systems. The cylindrical
coordinates fixed in space are denoted by (ρ, φ, z), and (r, θ) are moving cylindrical coordinates
centred on (ρ, z) = (R(t), Z(t)).

for the flow generated by (2.3) is given, via the Biot-Savart law, in the form

ψ(ρ, z) = − ρ

4π

∫ ∞
−∞

∫ 2π

0

∫ ∞
0

ζ(ρ′, z′)ρ′ cosφ′ dρ′ dφ′ dz′√
ρ2 − 2ρρ′ cosφ′ + ρ′2 + (z − z′)2

. (2.4)

The theorems of Kelvin and Helmholtz imply that determination of the ring motion
necessitates a knowledge of the flow velocity in the vicinity of the core.

As is well known, the irrotational flow velocity calculated from (2.4) for an infinitely
thin core increases without limit primarily in inverse proportion to the distance from
the core. In addition, it entails a logarithmic infinity originating from the curvature
effect. The singularity may be resolved by matching the outer flow to an inner vortical
flow which decays rapidly as the core centre is approached. Thus we are led to inner
and outer expansions (Ting & Tung 1965; Tung & Ting 1967). The inner region
consists of the core itself and the surrounding toroidal region with thickness of order
the core radius σ. There we develop an inner asymptotic expansion, incorporating the
effect of curvature, matching at each level to the outer solution (2.4).

To this end, it is advantageous to introduce, in the axial plane, local polar coor-
dinates (r, θ) moving with the core centre† (R(t), Z(t)) with θ = 0 in the ρ-direction
(figure 1):

ρ = R(t) + r cos θ, z = Z(t) + r sin θ. (2.5)

Let us non-dimensionalize the inner variables. The radial coordinate is normalized by
the core radius εR0(= σ) and the local velocity v = (u, v), relative to the moving frame,
by the maximum velocity Γ/(εR0). In view of (1.1), the normalization parameter
for the ring speed (Ṙ(t), Ż(t)), the slow dynamics, should be Γ/R0. The suitable
dimensionless inner variables are thus defined as

r∗ =
r

εR0

, t∗ =
t

R2
0/Γ

, ψ∗ =
ψ

ΓR0

, ζ∗ =
ζ

Γ/R2
0ε

2
,

v∗ =
v

Γ/(R0ε)
, (Ṙ∗, Ż∗) =

(Ṙ, Ż)

Γ/R0

.

 (2.6)

The difference in normalization between the last two of (2.6) should be kept in mind.

† The definition of the ‘core centre’ will be discussed at some length in § 4.2.
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In keeping with (2.2), define

ν̂ =

{
0 if ReΓ � (R0/σ0)

2

1 if ReΓ . (R0/σ0)
2.

(2.7)

The equations handled in the inner region are the coupled system of the vorticity
equation, obtained by taking the curl of the Navier–Stokes equations, and the sub-
sidiary relation between ζ and ψ. Note that the time derivative, when written in terms
of the moving coordinates, is to be transformed as

∂

∂t

∣∣∣∣
(z,ρ)

=
∂

∂t

∣∣∣∣
(r,θ)

− Ṙ ∂

∂ρ
− Ż ∂

∂z

=
∂

∂t

∣∣∣∣
(r,θ)

− (Ṙ cos θ + Ż sin θ)
∂

∂r
− (−Ṙ sin θ + Ż cos θ)

1

r

∂

∂θ
. (2.8)

Dropping the stars, these equations take the following form:

∂ζ

∂t
+

1

ε2

(
u
∂ζ

∂r
+
v

r

∂ζ

∂θ

)
− 1

ερ2

(
∂ψ

∂r
sin θ +

1

r

∂ψ

∂θ
cos θ

)
ζ

= ν̂

[
∆ζ +

ε

ρ

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ζ − ε2

ρ2
ζ

]
, (2.9)

ζ =
1

ρ
∆ψ − ε

ρ2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ, (2.10)

where

ρ = R + ε r cos θ, (2.11)

∆ is the two-dimensional Laplacian,

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
, (2.12)

and u and v are the r- and θ-components of the relative velocity v:

u =
1

rρ

∂ψ

∂θ
− ε(Ṙ cos θ + Ż sin θ), (2.13)

v = −1

ρ

∂ψ

∂r
− ε(−Ṙ sin θ + Ż cos θ). (2.14)

We now postulate the following series expansions of the solution:

ζ = ζ(0) + εζ(1) + ε2ζ(2) + ε3ζ(3) + · · · , (2.15)

ψ = ψ(0) + εψ(1) + ε2ψ(2) + ε3ψ(3) + · · · , (2.16)

R = R(0) + εR(1) + ε2R(2) + · · · , (2.17)

Z = Z (0) + εZ (1) + ε2Z (2) + · · · , (2.18)

where ζ(i) and ψ(i) (i = 0, 1, 2, 3, . . .) are functions of r, θ and sometimes t. There arises
log ε as well, but we conveniently take it to be of order unity, since multiples of log ε
happen to be ruled out at least to the above order. Inserting these expansions into
(2.9) and (2.10), supplemented by (2.11)–(2.14), and collecting terms with like powers
of ε, we obtain the equations to be solved in the inner region. These are written out
in full in Appendix A.
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The permissible solution must satisfy the condition

u and v are finite at r = 0, (2.19)

which is better than the restrictive one that u = v = 0 at r = 0. The demand that it
smoothly match the asymptotic form, valid in the vicinity of the core, of the outer
solution will determine the values of Ṙ(i) and Ż (i) (i = 0, 1, 2, . . .).

This procedure was followed by Tung & Ting (1967) and Callegari & Ting (1978)
and others, up to first order. Our aim is to explore the second and third orders. Before
that, we reconsider the earlier results. A close examination of the low-order fields, the
first part of § 4, will highlight the importance of the distribution of vorticity ζ(r, θ),
especially its dipole structure, which may have so far gone unnoticed.

3. Outer solution
In this section, we inquire into the asymptotic behaviour of the Biot-Savart law

(2.4) at small values of r in order to deduce the matching conditions on the inner
solution. The existing theories of matched asymptotic expansions for the motion of a
slender curved vortex tube ignore the detailed distribution of vorticity in the core and
replace the volume integral merely with a line integral. This amounts to a ‘δ-function’
concentrated core, the vorticity being characterized by the single parameter Γ only.

For a circular vortex loop of unit strength placed at (ρ, z) = (R,Z), ζ =
δ(ρ− R) δ (z − Z) and the Stokes streamfunction (2.4) simplifies to

ψm(ρ, z;R) = − ρ

4π

∫ 2π

0

R cosφ′ dφ′√
ρ2 − 2ρR cosφ′ + R2 + (z − Z)2

(3.1a)

= − 1

2π
(r + r2)

[
K

(
r2 − r
r2 + r

)
− E

(
r2 − r
r2 + r

)]
, (3.1b)

where r2 = (4R2 + r2 + 4Rr cos θ)1/2 is the greatest distance from the point (ρ, z) to
the loop, and K and E are the complete elliptic integrals of the first and second kinds
respectively, with modulus (r2 − r)/(r2 + r) (Lamb 1932). We call ψm the monopole
field. The second expression is well known as Maxwell’s formula.

With the aid of the asymptotic behaviour of K and E for modulus close to unity,
the asymptotic form of ψm for r � r2 is obtainable at once (Dyson 1893; Tung &
Ting 1967) (see (3.7) below). It turns out however that, when going to higher orders,
(3.1) is not sufficient to qualify as the outer solution. Investigation of the detailed
structure of (2.4) is unavoidable.

For this purpose, it is expedient to adapt Dyson’s ‘shift operator’ technique to an
arbitrary distribution of vorticity, and to cast (2.4) in the following form:

ψ = − ρ

4π

∫∫ ∞
−∞

dx′ dẑ′ζ(x′, ẑ′) exp

(
x′
∂

∂R
− ẑ′ ∂

∂ẑ

)∫ 2π

0

R cosφ′ dφ′√
ρ2 − 2ρR cosφ′ + R2 + ẑ2

,

(3.2)

where (x, ẑ) = (ρ− R, z − Z) are local Cartesian coordinates attached to the moving
frame, and ζ is rewritten in terms of them. This expression is formally exact.

To substantiate (3.2), we suppose that the vorticity decreases with distance from
the local origin r = 0 so rapidly that all of the moments are bounded:∣∣∣∣∫ ∞−∞

∫ ∞
−∞
xmznζ(x, z) dx dz

∣∣∣∣ < ∞ for m, n = 0, 1, 2, . . . . (3.3)
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For simplicity, we use z for ẑ. In order to manipulate the inner limit of (3.2), the
exponential function of the operators is formally expanded in a Taylor series, giving

ψ(ρ, z) =

∫∫ ∞
−∞

dx′ dz′ζ(x′, z′)

{
1 +

(
x′
∂

∂R
− z′ ∂

∂z

)
+

1

2!

(
x′
∂

∂R
− z′ ∂

∂z

)2

+
1

3!

(
x′
∂

∂R
− z′ ∂

∂z

)3

+
1

4!

(
x′
∂

∂R
− z′ ∂

∂z

)4

+
1

5!

(
x′
∂

∂R
− z′ ∂

∂z

)5

+
1

6!

(
x′
∂

∂R
− z′ ∂

∂z

)6

+ · · ·
}
ψm (ρ, z;R). (3.4)

We shall find in §4 that up to O(ε3) the vorticity distribution has the following
dependence on the local polar coordinate θ:

ζ(x, z) = ζ0 + ζ11 cos θ + ζ12 sin θ + ζ21 cos 2θ + ζ31 cos 3θ, (3.5)

with ζ0, ζ11, ζ12, ζ21 and ζ31 being functions of r and t. For ζij , i labels the Fourier
mode, with j = 1 and 2 corresponding to cos iθ and sin iθ respectively. Introducing
(3.5) into (3.4) and integrating with respect to θ first, we arrive at the result

ψ =

{ ∞∑
n=0

1

[(2n)!!]2

[
2π

∫ ∞
0

r2n+1ζ0 dr

](
∂2

∂R2
+

∂2

∂z2

)n
+

[
π

∫ ∞
0

r2ζ11 dr

]
∂

∂R

+
1

8

[
π

∫ ∞
0

r4ζ11 dr

]
∂

∂R

(
∂2

∂R2
+

∂2

∂z2

)
+

1

4!8

[
π

∫ ∞
0

r6ζ11 dr

]
∂

∂R

(
∂2

∂R2
+

∂2

∂z2

)2

−
[
π

∫ ∞
0

r2ζ12 dr

]
∂

∂z
− 1

8

[
π

∫ ∞
0

r4ζ12 dr

]
∂

∂z

(
∂2

∂R2
+

∂2

∂z2

)
− 1

4!8

[
π

∫ ∞
0

r6ζ12 dr

]
∂

∂z

(
∂2

∂R2
+

∂2

∂z2

)2

+
1

4

[
π

∫ ∞
0

r3ζ21 dr

](
∂2

∂R2
− ∂2

∂z2

)
+

1

4!2

[
π

∫ ∞
0

r5ζ21 dr

](
∂2

∂R2
− ∂2

∂z2

)(
∂2

∂R2
+

∂2

∂z2

)
+

1

4!

[
π

∫ ∞
0

r4ζ31 dr

](
∂3

∂R3
− 3

∂3

∂R∂z2

)
+ · · ·

}
ψm. (3.6)

The first term, summation of a series, is obtained by resorting to an ingenious
technique developed by Dyson (see Appendix B). By virtue of (B 5) satisfied by ψm,
the operation of differentiation can be considerably simplified with second-derivatives
in z being replaced by derivatives in R as shown in Appendix B. Hereafter we invoke
the asymptotic form of ψm valid in the neighbourhood of the ring (ε� r/R � 1):

ψm = −ΓR
2π

{
log

(
8R

r

)
+

r

2R

[
log

(
8R

r

)
− 1

]
cos θ

+
r2

24R2

([
2 log

(
8R

r

)
+ 1

]
+

[
− log

(
8R

r

)
+ 2

]
cos 2θ

)
+

r3

26R3

([
−3 log

(
8R

r

)
+ 1

]
cos θ +

[
log

(
8R

r

)
− 7

3

]
cos 3θ

)}
+ · · · . (3.7)
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The analysis of the inner solution in § 4 will tell us that the vorticity, when expressed
in powers of ε as (2.15), takes the following form:

ζ0 = ζ(0) + ε2ζ
(2)
0 , ζ11 = εζ

(1)
11 + ε3ζ

(3)
11 ,

ζ12 = ε3ζ
(3)
12 , ζ21 = ε2ζ

(2)
21 , ζ31 = ε3ζ

(3)
31 ,

}
(3.8)

where the superscript stands for the order of perturbation and the ζ(k)
ij are all functions

of r and t. With this form, (3.7) and (3.8), along with (2.17), are substituted into (3.6)
and the resulting expression is made dimensionless with use of the normalization
(2.6). We use, in advance, the results R(1) = 0 and

2π

∫ ∞
0

rζ
(2)
0 dr = 0, (3.9)

which will be proved in Appendix C and in § 8 respectively. Several useful formulae
to facilitate the manipulation are included in Appendix B. We eventually arrive
at the asymptotic development of the Biot-Savart law, valid to O(ε3), in a region
ε� r/R � 1 surrounding the core:

ψ = −R
(0)Γ

2π
log

(
8R(0)

εr

)
+ ε

{
− Γ

4π

[
log

(
8R(0)

εr

)
− 1

]
r cos θ + d(1) cos θ

r

}

+ε2

{
− Γ

25πR(0)

([
2 log

(
8R(0)

εr

)
+ 1

]
r2 −

[
log

(
8R(0)

εr

)
− 2

]
r2 cos 2θ

)

+
d(1)

2R(0)

[
log

(
8R(0)

εr

)
+

cos 2θ

2

]
− ΓR(2)

2π
log

(
8R(0)

εr

)
+ q(2) cos 2θ

r2

}

+ε3

{
Γ

27π(R(0))2

([
3 log

(
8R(0)

εr

)
− 1

]
r3 cos θ −

[
log

(
8R(0)

εr

)
− 7

3

]
r3 cos 3θ

)
− d(1)

8(R(0))2

([
log

(
8R(0)

εr

)
− 7

4

]
r cos θ +

r cos 3θ

4

)
− ΓR(2)

4πR(0)
r cos θ

− 1

2π

(
1

4

[
2π

∫ ∞
0

r3ζ
(2)
0 dr

]
+ R(0)

[
π

∫ ∞
0

r2ζ
(3)
11 dr

]
+

1

4

[
π

∫ ∞
0

r3ζ
(2)
21 dr

])
cos θ

r

+
q(2)

4R(0)r
(cos θ + cos 3θ)− 1

πR(0)

(
1

3 · 28

[
2π

∫ ∞
0

r7ζ(0)dr

]
− R(0)

8 · 4!

[
π

∫ ∞
0

r6ζ
(1)
11 dr

]
+

(R(0))2

4!

[
π

∫ ∞
0

r5ζ
(2)
21 dr

]
+

(R(0))3

6

[
π

∫ ∞
0

r4ζ
(3)
31 dr

])
cos 3θ

r3
− R(0)

2π

[
π

∫ ∞
0

r2ζ
(3)
12 dr

]
sin θ

r

}
+ · · · ,

(3.10)

where

Γ = 2π

∫ ∞
0

rζ(0) dr (3.11)

(Γ = 1 when non-dimensionalized), and d(1) and q(2) are the strength of the dipole at
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O(ε) and the quadrupole at O(ε2):

d(1) = − 1

2π

{
1

4

[
2π

∫ ∞
0

r3ζ(0)dr

]
+ R(0)

[
π

∫ ∞
0

r2ζ
(1)
11 dr

]}
, (3.12)

q(2) = − 1

2πR(0)

{
− 1

26

[
2π

∫ ∞
0

r5ζ(0)dr

]
+
R(0)

8

[
π

∫ ∞
0

r4ζ
(1)
11 dr

]
+

(R(0))2

2

[
π

∫ ∞
0

r3ζ
(2)
21 dr

]}
. (3.13)

The terms multiplied by Γ stem from Γψm, and only these have been previously
employed as the outer solution. We now recognize that, at higher orders, the monopole
field needs to be corrected by the induction velocity associated with the di-, quadru-,
hexa poles . . . distributed along the centreline r = 0 of the core. In the light of (3.12)
and (3.13), the detailed profile of vorticity in the core is necessary to evaluate these
multi-pole induction terms. The above formal asymptotic expression will be vital in
finding a higher-order general formula for the ring speed in § 7.

Parts of (3.10) supply the matching conditions on the inner solution. The distribu-
tions of ζ(1)

11 , ζ(2)
0 , ζ(2)

21 , ζ(3)
11 , ζ(3)

12 and ζ(3)
31 are as yet unknown, but will be determined by

the inner expansion and the matching procedure. The present scheme looks sound
in that the inner solution influences the outer field, and so, by further reflection,
takes part in the determination of the ring motion. It will be clarified that the dipole
components ζ(1)

11 , ζ(3)
11 , ζ(3)

12 are distinctive in that they contain parameters, the strength
of the dipole, to be prescribed. On the other hand, the strength of higher-order poles
is uniquely determined once the mono- and dipole fields are given. In the subsequent
sections, we shall construct the flow field in the inner region order by order.

4. Inner expansions up to second order
In this section, we recall the inner expansions at leading and first orders, developed

by Tung & Ting (1967), Widnall et al. (1971) and Callegari & Ting (1978), and extend
them to second order. In the course of the scrutiny, a few steps that have been
incomplete will be identified. These will shed light on some non-trivial aspects of the
problem that need to be understood in deriving the third-order velocity formula.

4.1. Zeroth order

The equations of motion, expanded in powers of ε, are presented in Appendix A.
At O(ε0), the Navier–Stokes equations reduce to the Jacobian form of the Euler
equations (A 2):

[ζ(0), ψ(0)] ≡ 1

r

∂(ζ(0), ψ(0))

∂(r, θ)
= 0, (4.1)

resulting in ζ(0) =F(ψ(0)), for some function F.
Suppose that the flow ψ(0) has a single stagnation point at r = 0, all the streamlines

being closed around that point. Then it is probable that the solution of (4.1), coupled
with the ζ–ψ relation (A 7) at O(ε0), must be ‘radial’ ψ(0) = ψ(0)(r); the streamlines
are then necessarily circles (Moffatt et al. 1994). A virtually equivalent statement can
be mathematically proved, with rigour, by combining the theorem of Caffarelli &
Friedman (1980) with that of Fraenkel (1999) (theorem 4.2 and exercise 4.20).

The functional form of ψ(0) and ζ(0) remains undetermined at this level of ap-
proximation, but is determined through the axisymmetric (or θ-averaged) part of the
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vorticity equation (A 4) at O(ε2):

∂ζ(0)

∂t
=

(
ζ(0) +

r

2

∂ζ(0)

∂r

)
Ṙ(0)

R(0)
+ ν̂

(
∂2ζ(0)

∂r2
+

1

r

∂ζ(0)

∂r

)
(4.2)

(Tung & Ting 1967). This is to be solved under some initial condition with vorticity
localized in a toroidal region, around r = 0, of thickness σ0.

At very large values of the Reynolds number ReΓ � (R0/σ0)
2, ν̂ = 0 (see (2.7)),

and (4.2) admits the general solution

ζ(0) = G
(
r
√
R(0)

)
R(0), (4.3)

with G an arbitrary function. This is simply a kinematical consequence of the fact
that a radial expansion of a ring causes stretching of vortex lines, in proportion to
R(0), and, at the same time, contraction of the core area like (R(0))−1. In the event that
R(0) = const., which is the case of present concern, (4.3) implies that the vorticity is
steady, a result attributable to our assumption of a slow time scale.

On the other hand, if ν̂ = 1, viscosity plays the role of selecting the distribution.
For instance, we consider a specific initial distribution of a δ-function vorticity
concentrated on the circle of radius R(0):

ζ(0) = δ(ρ− R(0))δ(z − Z (0)) at t = 0. (4.4)

By a change of variables,

τ =

∫ t

0

R(0)(t′)dt′, η = r
√
R(0), (4.5)

(4.2) is rendered free from the convection term, giving the fundamental solution

ζ(0) =
R(0)

4πν̂τ
e−η

2/4ν̂τ. (4.6)

When R(0) is constant, (4.6) becomes the Lamb–Oseen diffusing vortex:

ζ(0) =
1

4πν̂t
e−r

2/4ν̂t (4.7)

(Tung & Ting 1967; Saffman 1970).
In view of (2.13), (2.14) and (A 7), the leading-order variables are related to each

other through

u(0) =
1

R(0)r

∂ψ(0)

∂θ
, v(0) = − 1

R(0)

∂ψ(0)

∂r
, ζ(0) =

1

R(0)
∆ψ(0) = −1

r

∂

∂r
(rv(0)). (4.8)

These are integrated to provide a general solution:

u(0) = 0, v(0) = −1

r

∫ r

0

r′ζ(0)(r′, t)dr′, ψ(0) = −R(0)

∫ r

0

v(0)(r′, t)dr′. (4.9)

In the case of the Lamb–Oseen vortex, they are specialized to

v(0) = − 1

2πr
(1− e−r

2/4ν̂t), ψ(0) =
R(0)

2π

∫ r

0

1

r′
(1− e−r

′2/4ν̂t)dr′. (4.10)

This solution automatically fulfils the matching condition, the leading-order part of
(3.10),

ψ(0) ∼ R(0)

2π
log r + const. as r →∞. (4.11)
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This parallels the asymptotic analysis of a non-axisymmetric Burgers vortex de-
veloped by Moffatt et al. (1994); (4.1) at leading order is nothing other than the
steady Euler equation. If (1 �) ReΓ . (R0/σ0)

2, viscosity has a residual effect, at
O(ν/Γ ), of selecting the distribution of vorticity. The inviscid solution (4.3) for ν̂ = 0
is reproduced by taking the limits ν → 0, t→ ∞ in that order. In this case, viscosity
is effective on a time scale much longer than that relevant to the ring motion. The
alternative ordered limiting process t→∞, ν → 0 is described by the viscous solution
(4.7); this situation is reminiscent of the type of situation to which the Prandtl–
Batchelor theorem applies (Batchelor 1956) when the effect of viscosity, although
small, determines the appropriate leading-order solution.

The assumption (4.4) of a ‘δ-function’ core at t = 0 is of course idealized. In reality,
vortex rings are formed through a succession of complicated process, involving
impulsive ejection of a fluid volume and the resulting generation of a tangential
discontinuity, or a very large gradient in velocity, the Kelvin–Helmholtz instability,
roll-up of a vortex sheet and formation of a spiral structure (see, for example,
Maxworthy 1977; Didden 1979; Pullin 1979; Nitsche & Krasny 1994; James &
Madnia 1996; Wakelin & Riley 1997; Gharib, Rambod & Shariff 1998). At an initial
stage, the resulting distribution of vorticity depends upon this process (cf. Moore &
Saffman 1973). The relevance of our solution for practical flows generated by such
fast processes may well be questionable. Experimental evidence that supports this
relevance will be collected in § 6.

4.2. First order

Combining (A 3) with (A 8), we see that the first-order perturbation ψ(1) satisfies

(∆− a)ψ(1) = − cos θv(0) + R(0)ra(Ż (0) cos θ − Ṙ(0) sin θ) + 2rζ(0) cos θ, (4.12)

where

a(r, t) = − 1

v(0)

∂ζ(0)

∂r
. (4.13)

Here we have anticipated that ζ(1)
0 = 0, from analysis of the vorticity equation at

O(ε3). The proof of this is relegated to Appendix C.
The solution satisfying the condition (2.19) that the relative velocities (u(1), v(1)) are

finite at r = 0 is explicitly written down in the following way. The θ-dependence is

ψ(1) = ψ
(1)
11 cos θ + ψ

(1)
12 sin θ. (4.14)

The Fourier coefficients are conveniently decomposed into two parts:

ψ
(1)
11 = ψ̃

(1)
11 − R(0)rŻ (0), ψ

(1)
12 = ψ̃

(1)
12 + R(0)rṘ(0). (4.15)

The equations for ψ̃(1)
11 and ψ̃(1)

12 then become

[
∂2

∂r2
+

1

r

∂

∂r
−
(

1

r2
+ a

)]
ψ̃

(1)
11 = −v(0) + 2rζ(0), (4.16)[

∂2

∂r2
+

1

r

∂

∂r
−
(

1

r2
+ a

)]
ψ̃

(1)
12 = 0. (4.17)

By inspection, we find that v(0) is a solution of (4.17) (Widnall et al. 1971; Callegari
& Ting 1978). The general solution is then immediately obtainable as

ψ̃
(1)
11 = Ψ

(1)
11 + c

(1)
11 v

(0), ψ̃
(1)
12 = c

(1)
12 v

(0), (4.18)
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where Ψ (1)
11 is a particular integral of (4.16):

Ψ
(1)
11 = v(0)

∫ r

0

dr′

r′[v(0)(r′)]2

{∫ r′

0

r′′v(0)(r′′)[−v(0)(r′′) + 2r′′ζ(0)(r′′)]dr′′
}

= −v(0)

{
r2

2
+

∫ r

0

dr′

r′[v(0)(r′)]2

∫ r′

0

r′′
[
v(0)(r′′)

]2
dr′′
}
, (4.19)

and c(1)
11 and c(1)

12 are constants (which may depend on t).
The matching condition, a part of the O(ε)-terms of (3.10), that has been employed

in previous work,

ψ(1) ∼ − 1

4π

[
log

(
8R(0)

εr

)
− 1

]
r cos θ as r →∞, (4.20)

gives rise to

Ṙ(0) = 0, (4.21)

and

Ż (0) =
1

4πR0

[
log

(
8R0

ε

)
− 1

2
+ A

]
, (4.22)

where

A = lim
r→∞

{
4π2

∫ r

0

r′[v(0)(r′)]2 dr′ − log r

}
. (4.23)

In (4.22) and henceforth, we use, with some abuse of notation, R0 in place of R(0).
The translation velocity (4.22), along with (4.23), is identical with (1.3). In the case of
the Lamb–Oseen vortex (4.7) or (4.10),

A = log

(
1

2
√
ν̂t

)
+ 1

2
(γ − log 2), (4.24)

and (4.22) reduces to (1.4). Unfortunately the two parameters c(1)
11 and c

(1)
12 remain

undetermined. Setting this aside, once the streamfunction is known, the distribution
of vorticity is calculable through

ζ(1) =
1

R0

(aψ̃(1)
11 + rζ(0)) cos θ +

a

R0

ψ̃
(1)
12 sin θ. (4.25)

To have an idea on this indeterminacy, we revisit the discrete model in an inviscid
flow initially studied by Kelvin (1867) and Dyson (1893). This is the case amenable
to analysis in explicit form. The leading-order flow is ‘the Rankine vortex’, that is, a
straight circular vortex tube of unit radius surrounded by an irrotational flow:

ζ(0) =


1

π

0,

v(0) =


− r

2π
(r 6 1)

− 1

2πr
(r > 1).

(4.26)

The choice

c
(1)
11 = 5

8
, c

(1)
12 = 0, (4.27)

ensures continuity of the relative velocity across the core boundary (r = 1) to
O(ε) (Widnall et al. 1971). Still the difficulty remains unresolved when a continuous
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distribution of vorticity takes the place of the discrete one, because the continuity
condition on velocity is no longer of help. To make matters worse, both c

(1)
11 and c

(1)
12

admit arbitrary time dependence as long as we apply the matching condition (4.20).
Observe now that, with spatial translation of the origin of the moving frame by εα

in the ρ-direction and εβ in the z-direction, the streamfunction, when redefined as a
function of the relative coordinates, is altered to

ψ
(
ρ− (R0 + ε2α), z − (Z0 + ε2β)

)
= ψ(0)(ρ− R0, z − Z0) + ε

[
ψ(1)(ρ− R0, z − Z0)− α ε∂ψ

(0)

∂ρ
(ρ− R0, z − Z0)

−β ε∂ψ
(0)

∂z
(ρ− R0, z − Z0)

]
+ O(ε2)

= ψ(0) + ε
(
ψ(1) + αR0v

(0) cos θ + βR0v
(0) sin θ

)
+ O(ε2). (4.28)

Comparison of (4.28) with (4.15) and (4.18) suggests that, when measured in terms
of the inner variable, c(1)

11 is tied in with shift of the moving frame radially outward

by εc(1)
11 /R0 and c(1)

12 with shift in the axial direction by εc(1)
12 /R0. Alternatively, c(1)

11 and

c
(1)
12 may be thought of as the parameters placing the circular core in a given moving

frame, to an accuracy of O(ε), in terms of the inner spatial scale. In § 5, we shall
demonstrate that this is indeed the case, though the proof is given only for the radial
displacement. The axial displacement is trivial, whereas the radial one is necessarily
accompanied by the stretching or contraction of vortex lines as a whole. Accordingly,
the latter cannot be expressible solely by the Taylor expansions.

Without loss of generality, we may put

c
(1)
12 = 0, (4.29)

which avoids unnecessary complication of the subsequent analysis. Still, a freedom
of choice of radial location of the centre is at our disposal. There is a link between
the location of the core centre and the strength of the dipole; in conjunction with
the outward displacement by εα of the circular core in the axial plane, a crescent
region arises, with thickness of order εα just outside the original core, where vorticity
is gained. In compensation, a crescent region on the inner side of the core loses
vorticity, or equivalently gains equal negative vorticity. It follows that a shift of the
core gives rise to a vortex pair which induces, when viewed locally, a dipole field.
Fixing the initial location of the core or c(1)

11 (0) is equivalent to specification of the
initial strength d(1)(0) of the dipole defined by (3.12). Accordingly, (4.20) should be
superseded by

ψ(1) ∼
{
− 1

4π

[
log

(
8R0

εr

)
− 1

]
r +

d(1)(t)

r

}
cos θ as r →∞, (4.30)

with which a proper formulation of the initial-value problem (or the steady problem
if ν = 0) is completed.

Yet, we have no way of finding the temporal evolution of d(1)(t) for t > 0. In
effect, it may be arbitrary. We can verify that whatever the evolution of d(1)(t) or
c

(1)
11 (t) for t > 0 may be, this arbitrariness is consistently absorbed at third order,

producing the same radial velocity Ṙ(2) + ċ
(1)
11 /R0 of the ring (Fukumoto 2000). This

implies that the asymptotic solution of the Navier–Stokes equations is unique but
that its representation entails some freedom. The ring, a real entity, is ignorant of
the artificially allocated coordinates. The speed of the ring is expressed, in an infinite
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variety of ways, as the sum of the speed of the moving coordinates and that of
the ring in this frame. This situation is reminiscent of the well-known fact that the
gravitational potential of a compact solid contains a dipole term unless the origin of
coordinates is placed at the centroid (Jeffreys & Jeffreys 1956).

It is illustrative to draw the streamlines of the steady inviscid solution perturbing
the Rankine vortex (4.26). With the choice of (4.27), we have the streamfunctions,
relative to the frame moving with the speed given by (4.22) with A = 1/4, to first
order:

ψ(0) =


R0

4π

[
r2 − 1− 2 log

(
8R0

ε

)]
(r 6 1)

−R0

2π
log

(
8R0

εr

)
(r > 1),

(4.31)

ψ̃
(1)
11 =


5

16π
(r3 − r) (r 6 1)

1

4π

[
r log r +

3

4

(
r − 1

r

)]
(r > 1),

(4.32)

where we have used

a = −2δ(r − 1). (4.33)

Figure 2(a) displays the streamlines ψ(0) = const., figure 2(b) ψ̃(1)
11 cos θ = const., and

figure 2(c) ψ(0)+εψ̃(1)
11 cos θ = const. For clarity, the rather large value ε = 0.5 is chosen.

As expected, the origin r = 0 coincides with the centre of the circular core. More
remarkably, figure 2(b) exhibits a dipole flow associated with a pair of antiparallel
vortices. Its source is twofold. One is the ‘apparent’ dipole due to displacement of
the centre as discussed above. The other has a kinematical origin. When a columnar
vortex is bent to form a torus, vortex lines are stretched on the convex side, and
contracted on the concave side. As a consequence, the vorticity is enhanced on the
convex side but is diminished on the concave side, implying the creation of a vortex
pair at O(ε). Indeed, (4.25) gives

ζ(1) =


r

πR0

cos θ (r 6 1)

0 (r > 1).

(4.34)

We speculate that the dipole is a key property of a curved vortex tube. A vortex ring
may be locally considered as a line of dipoles based at the core centreline embedded
in the flow field induced by the circular line vortex. The driving mechanism of the
self-propulsion is not only convection due to the flow of the circular vortex but
also induction due to the effective vortex pair. The dipole strength depends upon
the distribution of vorticity in the core, and this is one of the reasons why we are
concerned with the inner field.

We end this subsection with an alternative derivation of the translation velocity
(4.22). The following procedure allows us to skip the solution of (4.12), and will
actually be crucial in getting a general formula for the third-order correction to the
translation velocity in § 7.

By substitution from (A 8), the sin θ-part of (A 3) takes the following form, a step
before (4.12):

1

r

{
∂ζ(0)

∂r
ψ

(1)
11 + v(0) ∂

∂r

[
1

r

∂

∂r

(
rψ

(1)
11

)]}
− 2ζ(0)v(0) +

[v(0)]2

r
+ R0Ż

(0) ∂ζ
(0)

∂r
= 0. (4.35)
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Multiplying by r2 and integrating with respect to r from 0 to some large value, say
L, we have

Ż (0) =
π

R0

[
2π

∫ L

0

rζ(0) dr

] {v(0) ∂

∂r

(
rψ

(1)
11

)∣∣∣∣
r=L

+

∫ L

0

v(0)
(−2ζ(0)r2 + v(0)r

)
dr

}
. (4.36)

Remembering that 2π
∫ ∞

0
rζ(0) dr = Γ = 1 and v(0) ∼ −1/(2πr) as r → ∞ from (4.9)

and using the matching condition (4.30), the limiting form of (4.36) as L→∞ recovers
(4.22) and (4.23).

4.3. Second order

The second-order equations (A 4), cleared of the axisymmetric part, and (A 9) are
coupled to yield

∆ψ(2) = R0ζ
(2) +

ra

R0

ψ(1) cos θ +

[
ar2Ż (0)

2
+

1

2R0

(rv(0) + r2ζ(0))

]
(1 + cos 2θ)

+
1

2R0

(
∂ψ

(1)
11

∂r
+
ψ

(1)
11

r

)
+

1

2R0

(
∂ψ

(1)
11

∂r
− ψ

(1)
11

r

)
cos 2θ, (4.37)

where

ζ(2) = ζ
(2)
0 +

{
a

R0

ψ
(2)
21 +

b

4R2
0

(ψ(1)
11 )2 +

r

2R2
0

(a+ R0bŻ
(0))ψ(1)

11

+
1

4

[
b(Ż (0))2 +

3

R0

aŻ (0)

]
r2

}
cos 2θ, (4.38)

and

b(r, t) = − 1

v(0)

∂a

∂r
. (4.39)

No condition is available, to this order, to determine the distribution ζ
(2)
0 of the

axisymmetric vorticity component at O(ε2). Its functional form will be found by
solving the convection–diffusion equation for ζ

(2)
0 obtained from the solvability

condition for (A 6), the fourth-order equation. This procedure is deferred to § 8.
The above equations reveal that the second-order perturbation ψ(2) comprises

mono- and quadrupole terms:

ψ(2) = ψ
(2)
0 + ψ

(2)
21 cos 2θ. (4.40)

The latter reflects an elliptical core deformation. The governing equation for the
monopole is(

∂2

∂r2
+

1

r

∂

∂r

)
ψ

(2)
0

= R0ζ
(2)
0 +

ra

2R0

ψ̃
(1)
11 +

1

2R0

[
rv(0) + r2ζ(0) +

∂ψ
(1)
11

∂r
+
ψ

(1)
11

r

]
+ R(2)ζ(0). (4.41)

The boundary conditions are the finiteness of velocity at the origin (2.19),

ψ
(2)
0 ∝ r as r → 0, (4.42)



18 Y. Fukumoto and H. K. Moffatt

and the matching condition, a part of (3.10) at O(ε2),

ψ
(2)
0 ∼ − 1

24πR0

[
log

(
8R0

εr

)
+

1

2

]
r2 +

(
d(1)

2R0

− R(2)

2π

)
log

(
8R0

εr

)
as r →∞. (4.43)

Under these conditions, (4.41) is readily integrated once to give

∂ψ
(2)
0

∂r
=
R0

r

∫ r

0

r′ζ(2)
0 dr′ +

1

2R0r

∫ r

0

r′2aψ̃(1)
11 dr′ +

ψ
(1)
11

2R0

+

(
r2

4R0

− R(2)

)
v(0)

+
3

4R0r

∫ r

0

r′3ζ(0)dr′, (4.44)

where (4.30) has been used. Integrating (4.16), after multiplication by r2, we have∫ r

0

r′2aψ̃(1)
11 dr′ = r2 ∂ψ̃

(1)
11

∂r
− rψ̃(1)

11 +
r3

2
v(0) − 3

2

∫ r

0

r′3ζ(0)dr′. (4.45)

This helps to further reduce (4.44) to

∂ψ
(2)
0

∂r
=
R0

r

∫ r

0

r′ζ(2)
0 dr′ +

r

2R0

∂ψ̃
(1)
11

∂r
+

(
r2

2R0

− R(2)

)
v(0) − r

2
Ż (0). (4.46)

Next we turn to the quadrupole ψ(2)
21 cos 2θ. It is simpler to deal with the stream-

function ψ̃(2) for the flow relative to the moving coordinate frame. This is available
by subtracting −Ż (0)ρ2/2, with ρ provided by (2.11), corresponding to the uniform
flow, and thus defining

ψ̃(2) = ψ̃
(2)
0 + ψ̃

(2)
21 cos 2θ, (4.47)

where

ψ
(2)
0 = ψ̃

(2)
0 − 1

4
Ż (0)r2, (4.48)

ψ
(2)
21 = ψ̃

(2)
21 − 1

4
Ż (0)r2. (4.49)

Then (4.37) and (4.38) simplify for ψ̃(2)
21 to(

∂2

∂r2
+

1

r

∂

∂r
− 4

r2
− a
)
ψ̃

(2)
21 =

b

4R0

(ψ̃(1)
11 )2 +

ra

R0

ψ̃
(1)
11

+
1

2R0

(
rv(0) + r2ζ(0) +

∂ψ̃
(1)
11

∂r
− ψ̃

(1)
11

r

)
. (4.50)

The boundary conditions demand that

ψ̃
(2)
21 ∝ r2 as r → 0, (4.51)

ψ̃
(2)
21 ∼ r2

4

{
Ż (0) +

1

8πR0

[
log

(
8R0

εr

)
− 2

]}
+
d(1)

4R0

as r →∞. (4.52)

Once the streamfunctions are available, the vorticity distribution is calculable from
(4.38), or equivalently,

ζ(2) = ζ
(2)
0 +

[
a

R0

ψ̃
(2)
21 +

b

4R2
0

(ψ̃(1)
11 )2 +

ra

2R2
0

ψ̃
(1)
11

]
cos 2θ. (4.53)

This distribution is sensitive to the displacement of the core centre, as represented by
(4.28). It is noteworthy that (4.50) is a natural extension of the quadrupole equation
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encountered by Moffatt et al. (1994) and Jiménez et al. (1996) for non-axisymmetric
Burgers and Lamb–Oseen vortices respectively.

In a general case, it is unlikely that (4.50) can be further integrated analytically. The
numerical computation is postponed to a subsequent paper, but we content ourselves
with an explicit solution for Dyson’s model. The axisymmetric part of the vorticity,
along with R(2), is shown to be suppressed: ζ(2)

0 = R(2) = 0. Then the monopole field,
the integral of (4.46), becomes

ψ̃
(2)
0 =

1

πR0


7

128
r4 − 5

64
r2 − 3

128
(r < 1)

1

16

(
log r − 3

4

)
r2 +

3

32
log r (r > 1),

(4.54)

and the quadrupole field is

ψ̃
(2)
21 =

1

πR0



3

64
r4 +

1

16

[
3 log

(
8R0

ε

)
− 5

]
r2 (r < 1)

1

32

[
3 log

(
8R0

ε

)
− log r − 5

2

]
r2 − 3

64

+
3

32

[
log

(
8R0

ε

)
− 3

2

]
1

r2
(r > 1).

(4.55)

These reproduce the velocity field at O(ε2) obtained, in a different manner, by Widnall
& Tsai (1977). The streamlines ψ̃(2) = const. are shown in figure 3. This resembles the
pattern of a pure strain.

We notice that the right-hand sides of (4.41) and (4.50), along with the boundary
conditions, accommodate no terms proportional to (log ε)2. This fact lends some
support to our perturbation scheme that dispenses with additional expansions in
powers of log ε.

5. Radial expansion
We are now at a stage where we can tackle the third-order problem. An analysis

of (A 5) and (A 10) leads us to the following form of the streamfunction ψ(3):

ψ(3) = ψ
(3)
11 cos θ + ψ

(3)
12 sin θ + ψ

(3)
31 cos 3θ. (5.1)

A dipole field again appears as the result of nonlinear interactions among the mono-,
di- and quadrupoles of lower orders. It is the cos θ component that takes part in
the correction to the ring speed at O(ε3). The sin θ component is responsible for the
radial velocity. We begin with the derivation of the radial velocity, or radial expansion
of the ring, and follow with the derivation of a general formula for the translation
velocity in § 7.

It is not difficult to get Ṙ(2) from equation for ψ(3)
12 in much the same way as getting

Ż (0) from (4.35) as expounded toward the end of § 4.2. However, by appeal to a
fundamental conservation law, we can determine it without having to calculate the
third-order flow field. Recall that the hydrodynamic impulse P is conserved, regardless
of the inviscid or viscous character of the flow (Lamb 1932; Saffman 1992):

P =
1

2

∫∫∫
x× ω dV = const. (5.2)

In the present axisymmetric problem, only the axial component Pz is non-zero, and
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Figure 2. Streamline patterns of the inviscid vortex ring with uniform ζ/ρ, relative to the frame
moving at the speed U given by (1.1), up to O(ε), as obtained by (4.31) and (4.32). The small

parameter ε = 0.5. (a) ψ(0) = const., (b) ψ̃(1)
11 cos θ = const., (c) ψ(0) + εψ̃

(1)
11 cos θ = const.
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Figure 3. Streamline pattern ψ̃(2) = ψ̃
(2)
0 + ψ̃

(2)
21 cos 2θ = const., at O(ε2), of the inviscid vortex ring

with uniform ζ/ρ, relative to the frame moving with the speed (1.1). The components ψ̃(2)
0 and ψ̃(2)

21

are given by (4.54) and (4.55), respectively.



Motion and expansion of a viscous vortex ring. Part 1 21

upon substitution from (2.3), (2.15) and (2.17), it becomes, after normalization by
ΓR2

0 ,

Pz = πR2
0 + ε2P (2) + · · · , (5.3)

where, assuming (3.9) (see § 8),

P (2) ≡ π (2R0R
(2)(t)− 4πd(1)(t)

)
, (5.4)

which should be constant throughout the time evolution. An appropriate initial
condition for R(2) is

R(2) = 0 at t = 0. (5.5)

It follows that P (2) = −4π2d(1)(0), and the radial motion is completely ruled by the
evolution of the dipole strength d(1)(t):

R(2)(t) =
2π

R0

[d(1)(t)− d(1)(0)]. (5.6)

This derivation shows that our formulation of the initial-value problem relates to the
fundamental laws of conservation of not merely circulation but also hydrodynamic
impulse.

Now we can confirm that increase of c(1)
11 , the coefficient of the homogeneous

solution (4.18), by R0α(t), amounts to shift of the core centre radially outwards by
α(t) (see (4.28)). In view of (4.25) and (3.12), ζ(1)

11 is increased by αav(0), resulting in a
change in d(1) as

d(1)(t)→ d(1)(t)− α(t)R0

2π
. (5.7)

In accordance, (5.6) gives way to[
R(2)(t) + α(t)

]− α(0) =
2π

R0

[d(1)(t)− d(1)(0)], (5.8)

showing the expected increase in the radial position of the centre.
The radial motion is explicitly deducible in specific cases. In the inviscid case

(ν̂ = 0), ζ(0) is steady so that the time dependence of ψ(1)
11 occurs only through c

(1)
11 ,

say, c(1)
11 (t) = c

(1)
11 (0) + R0α(t) with α(0) = 0. Then d(1)(t) in (5.8), which has nothing to

do with α(t), is a constant. Hence

R(2)(t) + α(t) = 0 for t > 0. (5.9)

The vortex ring undergoes no radial expansion.
For a viscous vortex ring (ν̂ = 1), we concentrate on the vorticity distribution (4.7)

starting from a δ-function core. In this case, Pz = πR2
0 identically and hence the O(ε2)

correction term is absent: P (2)(t) = 0 for t > 0. The initial condition (5.5) requires
that d(1)(0) = 0. The numerical evaluation of the behaviour of Ψ (1)

11 , for large r, is
carried out with ease to yield

Ψ
(1)
11 =

r

4π

[
log r + lim

r→∞

(
4π2

∫ r

0

r′[v(0)(r′)]2dr′ − log r

)
+

1

2

]
+
D(1)

r
+ · · · , (5.10)

where

D(1)(t) ≈ 0.41225489× t. (5.11)

The first-order streamfunction with c
(1)
11 = 0 corresponds to a dipole field whose

stagnation point is permanently located at r = 0 (Klein & Knio 1995). By identifying
D(1)(t) with d(1)(t) in (5.6) and restoring dimensional variables, we conclude that, given
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initially a circular line vortex of radius R0, the stagnation point ρ = R̃s(t) in the core,
viewed from the comoving coordinates, drifts outwards linearly in time owing to the
action of viscosity as

R̃s ≈ R0 + 2.5902739
νt

R0

. (5.12)

We have shown that, by appealing to conservation of impulse, the first-order stream-
function directly gives the answer. In Appendix D, we show how to derive (5.6) via
the third-order equation for ψ(3)

12 , to confirm the above result.
The analysis is extended to related expansion laws. The first-order streamfunction

for the flow viewed from the laboratory coordinate system in which the flow is at rest
at infinity is augmented by −R0rŻ

(0) cos θ as given by (4.14) with (4.15) and ψ(1)
12 = 0.

Substitution from (4.10) yields the Taylor expansion of (4.19) for small values of r as

Ψ
(1)
11 =

5r3

64πt
+ o(r3), (5.13)

resulting in

ψ
(1)
11 = −

(
c

(1)
11

8πt
+ R0Ż

(0)

)
r +

5r3

64πt
+ · · · . (5.14)

The choice

c
(1)
11 (t) = −8πR0Ż

(0)t, (5.15)

dictates that the stagnation point be maintained at r = 0. In the light of (4.18), with
v(0) provided by (4.10), and (5.10), the strength of the dipole is augmented by −c(1)

11 /2π
and is given, in the present case, by

d(1)
s (t) = D(1)(t) + 4R0Ż

(0)t. (5.16)

The second-order correction R(2)
s (t) to the radius of the stagnation circle is found

from (5.6) with d(1) provided by (5.16). Substitution from Saffman’s formula (1.4) tells
us that the radius Rs(t) of the stagnation circle grows as

Rs ≈ R0 +

[
2 log

(
4R0√
νt

)
+ 1.4743424

]
νt

R0

. (5.17)

Unlike (5.12), (5.17) includes a term proportional to t log t.
The temporal evolution of the radius Rp(t) of the loop of peak vorticity is deducible

by choosing c
(1)
11 (t) in (4.18) so that the local origin r = 0 of the moving frame is

maintained at the maximum of ζ(0) + εζ(1). Inserting the Gaussian distribution (4.7)
and (4.10) into (4.13) and using (5.13), we manipulate the Taylor expansion of (4.25)
for small r as

ζ(1) =
1

R0

[(
c

(1)
11

8πt2
+

1

4πt

)
x+ O(r2x)

]
, (5.18)

where x = r cos θ and x2 + z2 = r2. The condition of maximum vorticity ζ(0) + εζ(1) at
r = 0 (or x = z = 0) implies that

c
(1)
11 (t) = −2t. (5.19)

With this choice, the dipole strength d(1)
p (t) evolves as

d(1)
p (t) ≈ 4.5902739× t

2π
. (5.20)
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Relying upon the formula (5.6), we obtain the expansion law of the peak-vorticity
circle of radius Rp(t), which is expressed, in terms of the dimensional variables, as

Rp ≈ R0 + 4.5902739
νt

R0

. (5.21)

We point out that the asymptotic value 4.5902739 . . . at large Reynolds number
is different to 1.65 . . . at ReΓ = 104 calculated numerically by Wang et al. (1994).
In spite of this, at the same value of ReΓ , their numerical value 0.5779 . . . in the
formula of the translation velocity is in close agreement with Saffman’s asymptotic
value 0.57796576 . . .. They took tΓ/R2

0 as a small parameter and developed matched
asymptotic expansions valid at early times. In their analysis, the second-order non-
linear effect, the elliptical deformation of the core, is left out, while the effect of
viscosity is retained to O(ε3). They restricted the initial condition to a δ-function
core (4.4) and obtained, through a similar procedure to that in Appendix D, the
radial velocity Ṙ(2)

p , a step before reaching (5.6). Their formula depends entirely on the
specific distribution (4.7), while ours, (5.6), with the time-derivative removed, holds
true for an arbitrary initial condition, and furthermore, being connected with the
invariance property of the Navier–Stokes equations, is more convincing. At present,
we cannot account for this discrepancy.

In an effort to determine the translation speed of a vortex ring using the so-called
Lamb’s transformation method, Helmholtz (1858) and Saffman (1970) for convenience
introduced the definition of vorticity centroid in the axial direction. The counterpart
in the radial direction is

Rc ≡ 1

2

∫∫∫
(x× ω) · P

P 2
ρ dV =

π

Pz

∫∫
ρ3ζrdrdθ. (5.22)

This is decomposed for convenience as

Rc =
π

Pz

∫∫
(R + εr cos θ)ρ2ζr dr dθ

≈ R0 + ε2

{
R(2) +

π2

Pz

∫ ∞
0

(
2R0r

3ζ(0) + R2
0r

2ζ
(1)
11

)
dr

}
. (5.23)

With the help of (3.12) and (5.6), (5.23) is reduced to

Rc(t) ≈ R0 − 2πε2

R0

d(1)(0) +
3ε2

4R0

[
2π

∫ ∞
0

r3ζ(0) dr

]
. (5.24)

For the initial ‘δ-function’ core, (4.7) is inserted into (5.24), yielding

Rc ≈ R0 +
3νt

R0

, (5.25)

again contradicting Wang et al.’s claim that Rc is a constant.
An alternative choice for the position of the radial centroid is

Rc1 ≡ 1

Γ

∫∫
ρζ dS =

1

Γ

∫∫
ρζr dr dθ. (5.26)

Stanaway et al. (1988a, b) gave the temporal evolution of Rc1(t) without proof. For
completeness, we give it. Repeating the same procedure as above, we have, corre-
sponding to (5.24),

Rc1(t) ≈ R0 − 2πε2

R0

d(1)(0)− ε2

4R0

[
2π

∫ ∞
0

r3ζ(0)dr

]
. (5.27)
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For the Lamb–Oseen vortex at O(ε0), this becomes

Rc1 ≈ R0 − νt

R0

. (5.28)

This ‘shrinking’ law was satisfactorily observed in the full numerical simulations of
Stanaway et al. We see that the radial drift of vorticity distribution is sensitive to
the definition. The first one Rc(t) moves outwards in conformity with the circles of
relative and non-relative stagnation points and maximum vorticity, but the opposite
is true for Rc1(t).

Plainly, our asymptotic theory is invalidated after a long time when the core is
swollen and vorticity cancellation between the core regions of opposite-signed vorticity
is caused. Besides the velocity formula (1.4), Saffman (1970) obtained an estimate of
ring radius R(t), together with the translation velocity U(t), at a mature stage when
νt is comparable to R2

0 , up to coefficients of order unity, based largely on judicious
dimensional argument. In our notation, these estimates were

R ≈ (R2
0 + k′νt)1/2 ≈ R0 +

k′

2

νt

R0

, (5.29)

U ≈ ΓπR2
0

k
(R2

0 + k′νt)−3/2. (5.30)

Here the constants k and k′ remain indeterminate and the definition of R is obscure.
We have succeeded in determining k′, with the introduction of a precise definition of
ring radius. It is to be noted that none of the expansion (or shrinking) laws of radial
positions R̃s(t), Rs(t), Rp(t), Rc(t) and Rc1(t) involve the parameter Γ . They are all
attributable to the effect of viscous diffusion of curved vortex lines, which is linear in ν.

6. Comparison with experiments
We can now make a comparison with some practical flows. Fortunately, there exist

a few experimental results that address the distribution of vorticity, the trajectory and
translation velocity of laminar vortex rings.

Recall the discussion at the end of § 4.1 wherein the Gaussian distribution (4.7) of
vorticity resulted from the idealized condition (4.4). However this was realized in some
experiments. Sullivan, Widnall & Ezekiel (1973) measured the velocity distribution
around laminar vortex rings in air, at ReΓ = 7780 and 37900, using a laser Doppler
velocimeter. The vorticity distribution, obtained by differentiating the data, resembles
the Gaussian distribution, though they did not make this explicit (see also Sallet &
Widmayer 1974). Recently, Weigand & Gharib (1997) made refined measurements
of various quantities, at Reynolds numbers ReΓ ranging from 830 to 1650. Their
digital-particle-image-velocimetry data of laminar vortex rings in water decisively
demonstrated that the vorticity profile relaxes, at a few nozzle diameters downstream
from the exit, to the Gaussian distribution (4.7). On the other hand, there are
arguments in favour of a different distribution (Maxworthy 1972, 1977; Saffman
1978). Reconciling of the latter with ours calls for further study.

Weigand & Gharib (1997) measured ring trajectories, in the Reynolds-number
range 830 6 ReΓ 6 1650, using a calibrated video system. At early times in the range
6× 10−3 . νt/R2 . 3× 10−2, the data of translation velocity are well fitted with (1.4).
At longer times, say νt/R2 . 10−2, the data cross over to (5.30). They found that the
best fit is achieved with k = 14.4 and k′ = 7.8. The evolution (5.29) of ring radius
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with k′/2 = 3.9 exhibits a remarkable agreement with the asymptotic form (5.21) for
the peak-vorticity circle.

Yet, this is an indirect evidence. Sallet & Widmayer (1974) detected directly the
growth of ring radius of laminar, as well as turbulent, vortex rings in air in the
Reynolds-number range 4 × 104 . ReΓ . 6 × 104. They appealed to hot-wire mea-
surements. The identified core centre is looked upon as being close to the stagnation
circle viewed from the laboratory frame. They expressed their data in terms of the
ring growth rate αs along the trajectory defined by

αs ≈ tan αs ≡ ∆ρs
∆z

, (6.1)

where ∆ρs(t) = Rs(t)−R0 is the change of radius of the stagnation circle and ∆z(t) is
the downstream distance travelled by the ring. The distance travelled during the time
τ from the virtual initial instant is evaluated from (1.4) as

∫ τ
0
U(t) dt. On combining

with (5.17), (6.1) becomes

αs ≈ 8π

{
1 +

0.79513694

log
(
4R0/

√
ντ
)− 0.057796576

}
1

ReΓ
. (6.2)

Thus for example, the choice ReΓ = 4×104 and R0/(ντ)
1/2 = 10 produces αs ≈ 8×10−4.

This value lies in the range 0.7× 10−3 6 αs 6 1.5× 10−3 read off from figures 11 and
14 of Sallet & Widmayer (1974).†

Oshima (1972) visualized vortex rings in water by use of fine grains of tin made by
electrolysis. Figure 8 of her paper could capture the qualitative feature of our theory
in that the radial velocity of the ring does not depend on the circulation though the
translation velocity does so. However the quantitative agreement was not attained; a
crude estimate from figure 8 tells us that typically dR/dt ≈ 0.005 cm s−1. Identifying
R0 with radius 0.95 cm of the orifice, (5.12) and (5.21) leads to dR̃s/dt ≈ 0.027 cm s−1

and dRp/dt ≈ 0.048 cm s−1, respectively. The eye of the vortex ring, the visualized
centre, may not correspond to either of these points.

The linear law and its variant were not easy to identify for a high-Reynolds-number
vortex ring produced by Watanabe et al. (1995), though the trend of expansion was
mentioned. In a direct numerical simulation at high Reynolds numbers ReΓ = O(105),
Wakelin & Riley (1997) tracked the trajectory of the circle of maximum vorticity. In
their figures, a faint tendency of expansion of this circle is visible.

The radial expansion of the peak-vorticity circle can be indicated by drawing the
vorticity distribution to O(ε). Figure 4 depicts the temporal variation of ζ(0) + εζ(1)

given by (4.7) and (4.25) with ε = 0.3 or ReΓ ≈ 11.111111. We set c(1)
11 = 2πD(1)(t) ≈

2.5902739 t and thereby keep the origin r = 0 at the relative stagnation point within
an order of accuracy O(ε3). The radial movement of Rp(t) faster than R̃s(t) is clearly
seen. As mentioned above, Sullivan et al. (1973) and Weigand & Gharib (1997)
showed that the Lamb–Oseen vortex gives a good description of the measured
vorticity distribution. In addition, their refined data showed a slight asymmetric
deviation from the Gaussian distribution. Weigand & Gharib attributed the origin
of asymmetry to vorticity diffusion between the opposite-sign vortices. From the
standpoint of asymptotic expansions, the dipole structure or the effective vortex pair
induced at O(ε), due to the curvature effect, underpins the outward shift of the point of
maximum vorticity, accompanied by the asymmetric deformation of the distribution.

† Maxworthy (1977) referred to the value α ≈ 1.5 × 10−5 in § 5 of his paper. This may be a
typographical error and the correct value should be 1.5× 10−3.
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Figure 4. Development of vorticity distribution ζ(0) + εζ(1) of a viscous vortex ring, at indicated
times, starting from a δ-function profile at t = 0. The small parameter ε = 0.3, and vorticity is
calculated from (4.7) and (4.25).

Notice that a region of negative vorticity appears, on the convex side of ring, for
the radial distance ρ greater than a certain value. Though this overshoot is physically
unrealistic, it does not necessarily imply a flaw in our theory. The same type of
difficulty, non-uniformity of validity of asymptotic expansions around a Gaussian
vorticity distribution, was recognized by Moffatt et al. (1994), Jiménez et al. (1996)
and Prochazka & Pullin (1998), and the problem of a viscous vortex ring is no
exception. In reality, (4.7) and (4.25) tend, as r →∞, to

εζ(1)

ζ(0)
∼ r cos θ

R0

{
1− 1

2t

(
−c(1)

11 + 2πD(1) + 1
2

[
log

(
r

2
√
νt

)
+ 1

2
(1 + γ − log 2)

]
r2

)}
.

(6.3)

Whatever value we adopt for the disposable parameter c(1)
11 , the inversion of sign of

vorticity is unavoidable on the convex side (−π/2 6 θ 6 π/2) with

r >∼
(

4R0t

ε

)1/3

, or

[
3

log(R0/2ε
√
t)

4R0t

ε

]1/3

(6.4)

in dimensionless form.

7. Formula for the third-order correction to the translation velocity
The equations to be manipulated to obtain Ż (2) are the coupled system of the

vorticity equation (A 5) and ζ–ψ relation (A 10). For convenience, let us divide
these into three parts: the terms including Ż (2), ζ(2)

0 , ψ(2)
0 and R(2) only which are

designated by subscript a; those including ζ
(2)
21 and ψ

(2)
21 , except for [ζ(2), ψ(0)] +

[ζ(0), ψ(2)], designated by subscript b; and the remaining terms with subscript c.
By substitution from (4.14) with ψ

(1)
12 discarded, (4.40) and the corresponding

representations (4.25) and (4.53) for ζ(1) and ζ(2), the sin θ-terms of (A 5) give

1

r

(
∂ψ(0)

∂r
ζ

(3)
11 − ∂ζ(0)

∂r
ψ

(3)
11

)
+Na +Nb +Nc = 0. (7.1)
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Here Na, Nb and Nc are defined and reduced in the following way:

Na ≡ −R0

(
Ż (2) ∂ζ

(0)

∂r
+ Ż (0) ∂ζ

(2)
0

∂r

)
+

1

r

(
∂ψ

(2)
0
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(1)
11 − ∂ζ

(2)
0
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ψ

(1)
11

)

−R
(2)

R0r

(
∂ψ(0)

∂r
ζ

(1)
11 − ∂ζ(0)

∂r
ψ

(1)
11

)
− 1

R0

(
∂ψ(0)

∂r
ζ

(2)
0 +

∂ψ
(2)
0

∂r
ζ(0) − 2R(2)

R0

∂ψ(0)

∂r
ζ(0)

)

= −R0

(
Ż (2) ∂ζ

(0)

∂r
+ Ż (0) ∂ζ

(2)
0

∂r

)
− R(2)

(
Ż (0) ∂ζ

(0)

∂r
+
v(0)ζ(0)

R0

)
+

1

R0r

∂ψ
(2)
0

∂r
aψ̃

(1)
11 + ζ

(2)
0 v(0) − 1

r

∂ζ
(2)
0

∂r
ψ

(1)
11 , (7.2)

Nb ≡ 1

r

[
1

2

(
∂ζ

(2)
21

∂r
ψ
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11 − ζ(1)

11
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a

r
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Nc ≡ − r

R0

cos θ
(
[ζ(0), ψ(2)] + [ζ(1), ψ(1)] + [ζ(2), ψ(0)]

)
+
r2

2R2
0

(1 + cos θ)
(
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)− R0Ż
(2) ∂ζ
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− 1
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1
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)
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r
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1
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∂ψ(1)
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4R0

Ż (0)
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∂
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∂ψ̃

(1)
11
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r
+ rv(0)

)
aψ̃

(1)
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(7.4)

To deduce the second expressions of (7.2) and (7.3), we have made use of (A 3) and
(A 4).

In an analogous fashion, the cos θ-component of (A 10) is conveniently decomposed
as follows:

ζ
(3)
11 =

1

R0

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ψ

(3)
11 + ζ

(3)
11a + ζ

(3)
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(3)
11c , (7.5)
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where

ζ
(3)
11a ≡ 1

R0
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Equations (7.1) and (7.5) are combined to yield
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In this expression,
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R0v
(0)

r
ζ

(3)
11b −Nb = − v

(0)

R0r

(
1

2

∂ψ̃
(2)
21

∂r
+
ψ̃

(2)
21

r

)
+

1

r

{
1

2

(
− ∂ζ

(2)
21

∂r
ψ̃

(1)
11 +

1

R0

aψ̃
(1)
11

∂ψ̃
(2)
21

∂r

)
− ζ(2)

21

∂ψ̃
(1)
11

∂r

+
1

R0

[
∂

∂r
(aψ̃(1)

11 ) + r
∂ζ(0)

∂r

]
ψ̃

(2)
21

}
− rv(0)

4R2
0

aψ̃
(1)
11

− v
(0)

4R2
0

(
rv(0) + r2ζ(0) +

∂ψ̃
(1)
11

∂r
− ψ̃

(1)
11

r

)
− Ż
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In (7.10), (4.46) has been invoked to simplify the original expression.

With these forms, (7.10)–(7.12) are summed, and (7.9) becomes, after numerous
cancellations,
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The non-singular condition on the relative velocity at r = 0 is

ψ
(3)
11 ∝ r as r → 0, (7.14)

and the matching condition (3.10) reads
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The coefficient d(3)
1 signifies the strength of the cos θ-component of the dipole at O(ε3),

which is irrelevant to the determination of Ż (2). It deserves emphasis that the terms
multiplied by d(1) represent the flow induced by a line of dipoles arranged on the
core centreline, which has been overlooked in previous studies. This contribution may
be ignored at low orders, but is indispensable for finding the correct value of the
translation speed at O(ε3).

The remaining task is to multiply (7.13) by r2, integrate with respect to r, and
seek the limiting form as r → ∞. We assume again that (3.9) is true. Other necessary
formulae are collected in Appendix E. Taking the limit r → ∞, we eventually arrive
at the desired formula:
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where A and P (2) are given by (4.23) and (5.4), and
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is either a constant or some function of t. We repeat that P (2) does not depend on t.
For instance, if a viscous vortex (ν̂ = 1) has initially a concentrated distribution of
vorticity and thus ζ(0) evolves as (4.7), then P (2) = 0 and (7.16) reduces to

Ż (2) = −3d(1)

8R3
0

{
log

(
8R0

ε

)
+

4

3
log

(
1

4
√
t

)
+

2

3
γ − 7

6

}
− πB

4R3
0

− 39

27πR3
0

ν̂t

−2π

R0

∫ ∞
0

[∫ r

0

r′ζ(2)
0 (r′)dr′

]
v(0)(r)dr − π

2R2
0

∫ ∞
0

(
2ra+ bψ̃

(1)
11

)
rv(0)ψ̃

(2)
21 dr

+
π

8R3
0

∫ ∞
0

[
ra

(
ψ̃

(1)
11 − 3r

∂ψ̃
(1)
11

∂r

)
ψ̃

(1)
11 + b

(
ψ̃

(1)
11 − r ∂ψ̃

(1)
11

∂r

)(
ψ̃

(1)
11

)2

]
dr. (7.18)
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The term involving the integral of ζ(2)
0 (r) admits an interpretation as being inherited

from the first-order formula (4.22) and (4.23). In (4.46), we discard the terms unrelated
to R(2), leaving

∂ψ
(2)
0

∂r
=
R0

r

∫ r

0

r′ζ(2)
0 dr′ − R(2)v(0). (7.19)

In (4.23), v(0) is generalized to the axisymmetric part v0 of the azimuthal velocity valid
to O(ε2):

v0 =
1

R

∂ψ0

∂r
∼ 1

R0 + ε2R(2)

(
∂ψ(0)

∂r
+ ε2 ∂ψ

(2)
0

∂r

)
. (7.20)

Hence

4π2

∫ r

0

r′[v0(r
′)]2dr′

∼ 4π2

∫ r

0

r′[v(0)(r′)]2dr′ − 8π2ε2

∫ r

0

[ ∫ r′

0

r′′ζ(2)
0 (r′′)dr′′

]
v(0)(r′)dr′, (7.21)

giving rise to the third-order contribution.
Our formula is completed with construction of a formal solution for ζ(2)

0 , which
is the topic of the following section. If ν̂ = 0, Ż (2) is constant, whereas, if ν̂ = 1, it
varies with time. In either case, numerical computation of ψ̃(2)

21 and ζ(2)
0 and numerical

integration in the above formula are required to evaluate Ż (2).
Dyson’s vortex ring is analytically tractable. The leading-order solution is (4.26) or

(4.31). The first- and second-order solutions are given by (4.32) and (4.55). With these
expressions substituted into (4.23) and (3.12), A = 1

4
and d(1) = −3/(16π). The latter is

consistent with the form of (4.32) at large values of r. From (7.17), B = 11/(3× 27π2).

We may put R(2) = 0 and ζ
(2)
0 = 0, and thence P (2) = 3π/4 from (5.4). Introduction

of these values, (4.26), (4.32) and (4.55) into the formula (7.16) yields the third-order
correction in Dyson’s formula (1.1). We remark that the rapid convergence of the
functional form of the higher-order flow field may provide an explanation of the
unexpected fact that Dyson’s formula approximates even the speed of Hill’s spherical
vortex, the fattest limit of a family (Dyson 1893; Fraenkel 1972). At the same time, by
handling this explicit solution in the integrals of (7.16), we can appreciate a potential
difficulty in numerical integration which originates from a delicate cancellation of
large numbers.

Stanaway et al. (1988a, b) performed a full numerical simulation of the Navier–
Stokes equations for initial-value problems of a single vortex ring over a wide range
of Reynolds numbers, 0.001 6 ReΓ 6 1000. The computed translation velocity agreed
well with Saffman’s formula. Further, they undertook an assessment of the error
estimate of Saffman. They found that the error is O[(νt/R2

0) log (νt/R2
0)], being smaller

than that displayed in (1.4) by an order. This observation indicates that the correction
manifests itself at O(ε3), favouring our theory. To put it other way round, the range of
Reynolds number over which the present high-Reynolds-number asymptotic theory
is validated may be extended to a lower Reynolds number, say a few hundreds, in the
same way as Dyson’s theory can be applied to fat cores. This expectation is reinforced
by the agreement between the present theory and experiments as discussed in § 6, as
regards the expansion of ring radius.

We reiterate that a uniformly valid description of vorticity distribution is not
attained (figure 4). Jiménez et al. (1996) and Prochazka & Pullin (1998) illustrated
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that the same type of difficulty in problems of strained vortices is remedied by
introduction of strained coordinates. Their ingenious prescription amounts to taking
the summation of an infinite sequence of specific terms among ε-expansions. If this is
the case for a vortex ring also, the translation velocity Ż (2) obtained by substituting
the ‘renormalized’ vorticity, such as ζ(2), remains unaltered, when it is expanded in
powers of ε in the integrand.

8. Axisymmetric part of the second-order vorticity

The last remaining hurdle is to specify the second-order correction ζ
(2)
0 (r, t) to the

distribution of axisymmetric vorticity, whereby closure of (7.16) is achieved. For this,
we have to extract the axisymmetric part from the vorticity equation (A 6) at O(ε4).

Substituting ψ(1) = ψ
(1)
11 cos θ, (4.40), (5.1) and the associated vorticity distribution

(4.25) and (4.53) into (A 6), we get, after some manipulation, a somewhat simple
convection–diffusion equation for ζ(2)

0 :

1

r

∂

∂r

[
1

2R0

(
ζ

(1)
11 ψ̃

(3)
12 − ζ(3)

12 ψ̃
(1)
11

)− r

2R2
0

ζ(0)ψ̃
(3)
12 − Ṙ(2)r2

2R0

ζ(0)

]
= −∂ζ

(2)
0

∂t
+ ν̂

[
1

r

∂

∂r

(
r
∂ζ

(2)
0

∂r

)
+

1

r

∂

∂r

(
r

2R2
0

aψ̃
(1)
11

)]
, (8.1)

where we have defined

ψ
(3)
12 = ψ̃

(3)
12 + R0rṘ

(2), (8.2)

and (4.18) has been used. The cos θ-component of (A 5) is solved for ζ(3)
12 , giving

ζ
(3)
12 =

a

R0

ψ̃
(3)
12 +

r

v(0)

{
−∂ζ

(1)
11

∂t
+ ν̂

[(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ζ

(1)
11 +

1

R0

∂ζ(0)

∂r

]}
. (8.3)

Thus (8.1) is further simplified to

∂ζ
(2)
0

∂t
− ν̂ 1

r

∂

∂r

(
r
∂ζ

(2)
0

∂r

)
=

1

r

∂

∂r

{
− r

2R0v(0)

[
∂ζ

(1)
11

∂t

−ν̂
(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ζ

(1)
11

]
ψ̃

(1)
11 +

Ṙ(2)r2

2R0

ζ(0)

}
. (8.4)

The appropriate boundary condition is

|ζ(2)
0 (r, t)| decays rapidly with r, (8.5)

and the initial condition is

ζ
(2)
0 (r, 0) = 0 for 0 6 r < ∞. (8.6)

A glance at (8.4) shows that, whether viscosity is present or not,

d

dt

∫ ∞
0

rζ
(2)
0 (r, t)dr = 0. (8.7)

Use of the initial condition (8.6) proves (3.9).
By taking advantage of Green’s function, the unique solution of (8.4) for ν̂ = 1

may be written out. If in particular a δ-function core is assumed at the initial instant,
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or if ζ(0) evolves according to (4.7), then (8.4) admits the following solution:

ζ
(2)
0 (r, t) =

1

2R0t

(∫ t

0

t′Ṙ(2)(t′)dt′
)

1

r

∂

∂r

(
r2ζ(0)

)
− 1

4R0ν̂

∫ t

0

dt′
exp{−r2/4ν̂(t− t′)}

t− t′
∫ ∞

0

dr′ exp

{
− r′2

4ν̂(t− t′)
}
I0

(
rr′

2ν̂(t− t′)
)

× ∂

∂r′

{
r′ψ̃(1)

11 (r′, t′)
v(0)(r′, t′)

[
∂

∂t′
− ν̂

(
∂2

∂r′2
+

1

r′
∂

∂r′
− 1

r′2

)]
ζ

(1)
11 (r′, t′)

}
, (8.8)

where I0 is the modified Bessel function of zeroth order of the first kind.
On the other hand, if the action of viscous diffusion is switched off, the uniqueness

of the solution is lost. In this case, the time dependence is attributable to that of c(1)
11

in ψ̃(1)
11 given by (4.18), so we distinguish this term by a change of notation:

ψ̃
(1)
11 → ψ̃

(1)
11 + α(t)R0v

(0), (8.9a)

ζ
(1)
11 → ζ

(1)
11 − α(t)∂ζ

(0)

∂r
. (8.9b)

Then (8.4), with the viscous term dropped, becomes

∂ζ
(2)
0

∂t
=

1

r

∂

∂r

[
Ṙ(2)r2

2R0

ζ(0) +
r

2R0v(0)

∂ζ(0)

∂r
(α̇ψ̃(1)

11 + αα̇R0v
(0))

]
. (8.10)

Integration of (8.10) in time gives ζ(2)
0 , within an arbitrary additive function f(r), as

ζ
(2)
0 =

[
R(2)(t)− R(2)(0)

]
2R0r

∂

∂r

(
r2ζ(0)

)
+

1

r

∂

∂r

{
− [α(t)− α(0)]

2R0

raψ̃
(1)
11

+

[
α2(t)− α2(0)

]
4

r
∂ζ(0)

∂r

}
+ f(r). (8.11)

For the three-dimensional motion of a vortex filament with axial flow, Moore
& Saffman (1972), Callegari & Ting (1978) and subsequent papers turn, ad hoc,
to the law of conservation of mass flux in order to close the system of filament
equations. The above procedure shows that, in the presence of small viscosity, the
higher-order equations are capable of fixing the distribution of vorticity and thus
of uniquely determining the motion. The inviscid dynamics is compatible with an
arbitrary function ζ(0)(r), and the appearance of an undetermined function f(r) in
(8.11) is in harmony with this.

9. Conclusion
In this paper, we have extended the method of matched asymptotic expansions

to a higher order to calculate higher-order translation and expansion speeds of a
viscous vortex ring in an incompressible fluid. We have restricted attention to a
simple geometry, a thin axisymmetric vortex ring. By thin, we mean that the ratio ε of
core to curvature radii is much smaller than unity. In the event that viscous diffusion
is called into play, or the circulation Reynolds number ReΓ is not very large, an
appropriate definition is ε = (ν/Γ )1/2. An extension of the first-order general formula
for the speed due to Fraenkel and Saffman, is achieved to O(ε3), which incorporates
the influence of elliptical core deformation caused by the self-induced local strain. This
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includes Dyson’s classical result for an inviscid vortex ring of uniform distribution of
ζ/ρ. Our new formula is expected to have some practical bearing; it has a potential
applicability to fat vortex rings as is inferred from the surprising fact that Dyson’s
asymptotic solution applies, with reasonably high accuracy, even to Hill’s spherical
vortex, the fat limit. The rapid decrease in magnitude of the streamfunction increments
with order in ε lies behind this. This expectation receives support from the estimate
of deviation from Saffman’s velocity extracted from the full numerical simulation, at
moderate Reynolds numbers ReΓ 6 1000, performed by Stanaway et al. (1988a, b).

We have revealed that viscosity acts, at O(ε3), to enlarge ring radius. In particular,
the linear growth in time of radii of circles of relative stagnation point and peak
vorticity is explicitly demonstrated for a vortex ring starting from a circle of zero
thickness. A similar growth law is obtained for the stagnation circle viewed from the
laboratory coordinates. These results compare well with the experimental measure-
ments of Sallet & Widmayer (1974) and Weigand & Gharib (1997). We may sidestep
the third-order solution: by invoking conservation of hydrodynamic impulse, we can
deduce the radial expansion directly from the first-order solution. Our formulation
thus relies upon the fundamental conservation laws of both circulation and impulse.
This expansion law delimits the time during which the validity of the present asymp-
totic solution is guaranteed: for the ‘δ-function’ circular vortex loop of radius R0

placed at t = 0, the core thickness grows as σ ∼ √νt, whereas the elliptical stagnation
point and peak-vorticity point in the axial plane drift outwards as R(2) ∼ νt/R0. It
follows that they overshoot the outermost point of the core after t ∼ R2

0/ν, an obvious
time limit. Interestingly, at this time, the core becomes as fat as the initial ring radius,
namely σ ∼ R0 at t ∼ R2

0/ν, and, around this time, the toroidal core comes into
contact with itself.

A few points of indeterminacy of the low-order theories are pointed out. In the
course of obviating these difficulties, a correct formulation of an initial-value problem
is found, which is crucial to obtain the higher-order formula. The key ingredient is a
line of dipoles based at the core centreline oriented in the propagation direction. The
origin of the dipole at O(ε) is twofold. One is the vortex pair effectively produced, when
the straight vortex tube is bent, by stretching the outer vortex lines and contracting the
inner ones simultaneously. The other is an apparent one arising when the core centre
is displaced in a given moving frame in the axial plane. This observation leads us to an
improvement in the formulation, namely that the strength d(1) of the dipole should be
prescribed as an initial condition, though the temporal evolution might be arbitrary,
and that the matching condition on ψ(1) should include this dipole term as well.
However the connection between the radial position of the core centre and the strength
of the dipole is non-trivial. This is because radial expansion of the ring necessarily
accompanies differential stretching of vortex lines. The indistinguishability of these
two factors carries over to the three-dimensional dynamics of vortex tubes in general.

The streamline pattern of the first-order flow field exposes the mechanism of self-
induced propulsion. To O(ε), a vortex ring is locally regarded as a line of dipoles,
or a vortex pair, embedded in the flow field induced by the concentrated circular
vortex loop. The vortex ring is not a passive entity. The self-induced flow, around
the core centre, is not sufficient to determine the speed. It must be corrected by the
active motion driven by the vortex pair. The strength of the dipole depends upon the
distribution of leading-order vorticity, and this is why we have to look into the flow
field inside the core. At O(ε3), dipoles are again generated as a result of interplay
among lower-order mono-, di-, and quadru-poles. In addition, a non-local induction
from the first-order dipoles should not be forgotten.
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We have derived, in a systematic manner, a new asymptotic development of the
Biot-Savart law, the inner limit of the outer solution, allowing for an arbitrary, but
localized, distribution of vorticity. The evaluation of non-local induction from the di-
and quadru-poles and thus the derivation of Ż (2) rests on this formula. It includes
vorticity distribution through unknown functions that are to be determined from
the matching procedure. With this, we have put the formulation of the matched
asymptotic expansions on a sound basis in that the inner and outer expansions
cooperate with each other to proceed step-by-step. Derivation of the asymptotic
formula of the Biot-Savart law for three-dimensional vortex tubes would be a useful
generalization. Here a further question arises as to whether the restriction of geometry
to axisymmetry can be lifted or not. Under the localized induction approximation,
the three-dimensional motion of a vortex filament having an axial flow inside the
core is known to be modelled, up to O(ε2), by a completely integrable evolution
equation (Fukumoto & Miyazaki 1991). This equation is obtained from the first two
equations of an integrable hierarchy called the ‘localized induction hierarchy’ derived
by Langer & Perline (1991). The persistence of the relation of this hierarchy with the
Euler equations at higher orders would be worth pursuing (cf. Fukumoto & Miyajima
1996).

Our assumption of slow dynamics ignores a diversity of modes associated with
wavy motion, which are invariably observed in nature. Inclusion of the formation
process and the waves in our scheme calls for special treatment. The short bending
wave on a vortex ring has a non-trivial lateral nodal structure, and the wave amplitude
is localized inside the core as noted, for example, by Widnall & Tsai (1977). The short
waves and similarly the fast core-area varying waves, of little long-range influence,
is probably not very important for the translation speed. Numerical computation
of the flow field and the third-order correction Ż (2) to the ring speed is currently
underway, and will be reported in a subsequent paper. A comparison will be made
with experimental measurements and numerical simulations of decelerating motion
of vortex rings.
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of all at DAMTP is gratefully acknowledged. Y.F. was supported in part by a Grant-
in-Aid for Scientific Research from the Ministry of Education, Science and Culture
of Japan under contract No. 11640398 and by Grant No. 980236 of the Sumitomo
Foundation.

Appendix A. Equations of motion expanded in powers of ε
This Appendix presents a list of equations for the expansions (2.15) and (2.16) of ζ

and ψ. Tung & Ting (1967) derived the first three of them for the vorticity equation
(2.9) and the first two for the ζ–ψ relation (2.10). It will be shown in Appendix C that
Ṙ(1) = Ż (1) = 0, so the terms including R(1) and Z (1) are removed from the expressions
below.

Let us begin with the vorticity equation (2.9). The Jacobian is represented in terms
of a bracket:

[f, g] ≡ 1

r

∂(f, g)

∂(r, θ)
. (A 1)
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The terms of ε−2 constitute what we call the equation at leading order O(ε0):

1

R(0)
[ζ(0), ψ(0)] = 0. (A 2)

Repeating the same procedure, we successively obtain the equations at higher orders
as follows.

At O(ε1),

1

R(0)

(
[ζ(1), ψ(0)] + [ζ(0), ψ(1)]

)− 1

(R(0))2

(
∂ψ(0)

∂r
sin θ +

1

r

∂ψ(0)

∂θ
cos θ

)
ζ(0)

−
[(
Ż (0) sin θ + Ṙ(0) cos θ

) ∂ζ(0)

∂r
+
(
Ż (0) cos θ − Ṙ(0) sin θ

) 1

r

∂ζ(0)

∂θ

]
= 0, (A 3)

where a dot stands for differentiation with respect to time t. Here and hereafter (A 2)
is used to simplify the expressions.

At O(ε2),

1

R(0)

{
[ζ(2), ψ(0)] + [ζ(0), ψ(2)] + [ζ(1), ψ(1)]− r

R(0)
cos θ

(
[ζ(1), ψ(0)] + [ζ(0), ψ(1)]

)}

−
[(
Ż (0) sin θ + Ṙ(0) cos θ

) ∂ζ(1)

∂r
+
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) 1
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∂θ
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1
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∂ψ(1)
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1
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1
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ζ(0)

}

= −∂ζ
(0)

∂t
+ ν̂∆ζ(0), (A 4)

where ∆ is defined by (2.12).

At O(ε3),

1

R(0)
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]
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− 1
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. (A 5)

Finding the axisymmetric part ζ(2)
0 of the second-order vorticity necessitates a further

expansion. To avoid complexity, we use ∂ψ(0)/∂θ = ∂ζ(0)/∂θ = 0. The result is then,
at O(ε4),

1
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(1 + cos 2θ)

]
+

3r2

4(R(0))2

∂ψ(0)

∂r
(sin 3θ + sin θ)− 2R(2)

R(0)

∂ψ(0)

∂r
sin θ

)
ζ(1)

+

(
∂ψ(3)

∂r
sin θ +

1

r

∂ψ(3)

∂θ
cos θ − r

R(0)

[
∂ψ(2)

∂r
sin 2θ +

1

r

∂ψ(2)

∂θ
(1 + cos 2θ)

]
+

3r2

4(R(0))2

[
∂ψ(1)

∂r
(sin 3θ + sin θ) +

1

r

∂ψ(1)

∂θ
(cos 3θ + 3 cos θ)

]
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−2R(2)

R(0)

[
∂ψ(1)

∂r
sin θ +

1

r

∂ψ(1)

∂θ
cos θ

]
− r3

2(R(0))3

∂ψ(0)

∂r
(2 sin 2θ + sin 4θ)

+
3R(2)

(R(0))2
r
∂ψ(0)

∂r
sin 2θ − 2R(3)

R(0)

∂ψ(0)

∂r
sin θ

)
ζ(0)

}

= −∂ζ
(2)

∂t
+ ν̂

[
∆ζ(2) +

1

R(0)

(
∂ζ(1)

∂r
cos θ − 1

r

∂ζ(1)

∂θ
sin θ

)
− r

2(R(0))2

∂ζ(0)

∂r
(1 + cos 2θ)− 1

(R(0))2
ζ(0)

]
. (A 6)

Subsequently we write down the first four expansions of the ζ–ψ relation (2.10).
At O(ε0),

ζ(0) =
1

R(0)
∆ψ(0). (A 7)

At O(ε1),

ζ(1) =
1

R(0)

(
∆ψ(1) − r cos θ

R(0)
∆ψ(0)

)
− 1

(R(0))2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ(0). (A 8)

At O(ε2),

ζ(2) =
1

R(0)

{
∆ψ(2) − r cos θ

R(0)
∆ψ(1) +

[
r2

2(R(0))2
(1 + cos 2θ)− R(2)

R(0)

]
∆ψ(0)

}

− 1

(R(0))2

{(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ(1) − r

R(0)

[
(1 + cos 2θ)

∂

∂r
− sin 2θ

r

∂

∂θ

]
ψ(0)

}
.

(A 9)

At O(ε3),

ζ(3) =
1

R(0)

{
∆ψ(3) − r cos θ

R(0)
∆ψ(2) +

[
r2

2(R(0))2
(1 + cos 2θ)− R(2)

R(0)

]
∆ψ(1)

−
[

r3

4(R(0))3
(cos 3θ + 3 cos θ)−

(
2R(2)

(R(0))2
r cos θ − R(3)

R(0)

)]
∆ψ(0)

}

− 1

(R(0))2

{(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ(2) − r

R(0)

[
(1 + cos 2θ)

∂

∂r
− sin 2θ

r

∂

∂θ

]
ψ(1)

+
3r2

4(R(0))2

[
(cos 3θ + 3 cos θ)

∂

∂r
− sin 3θ + sin θ

r

∂

∂θ

]
ψ(0)

−2R(2)

R(0)

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ(0)

}
. (A 10)

Appendix B. Useful formulae for deriving the asymptotic development of
the Biot-Savart law

This Appendix collects several formulae that help to derive (3.10)–(3.13). The first
term on the right-hand side of (3.6), expressed in the form of a series, is deduced
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by adapting Dyson’s ingenious technique (Dyson 1893). Let us introduce a two-
dimensional differential operator

∇(−)
R ≡

(
∂

∂R
,− ∂

∂z

)
, (B 1)

and think of this as an ordinary vector. Here z is the relative coordinate in the axial
direction, denoted by ẑ in § 3. Let the angle between (x′, z′) and ∇(−)

R be Θ. Then we
may write

x′
∂

∂R
− z′ ∂

∂z
= |∇(−)

R |r′ cosΘ. (B 2)

This operator facilitates the expansions of (3.2), when the vorticity ζ consists only of
the axisymmetric component, as∫∫ ∞

−∞
dx′ dz′ζ0(r

′) exp

(
x′
∂

∂R
− z′ ∂

∂z

)
=

∫ ∞
0

dr rζ0(r)

∫ 2π

0

dΘ exp(|∇(−)
R |r cosΘ)

=

∫ ∞
0

dr rζ0(r)

∫ 2π

0

dΘ

∞∑
n=0

1

n!
|∇(−)

R |nrn cosn Θ

=

∞∑
m=0

(2m− 1)!!

(2m)!(2m)!!

(
2π

∫ ∞
0

r2m+1ζ0dr

)
∇2m
R . (B 3)

Here ∇R ≡ (∂/∂R, ∂/∂z) and

∇2
R = (∇(−)

R )2 =
∂2

∂R2
+

∂2

∂z2
, (B 4)

completing the proof.
A further simplification of (3.6) is accomplished by using the following identity for

the monopole field ψm: (
∂2

∂R2
+

∂2

∂z2

)
ψm =

1

R

∂ψm

∂R
(B 5)

(Lamb 1932). Repeated use of (B 5), with the help of the identity met by an arbitrary
function f of R,

∂2

∂R2

(
f

R

)
=

1

R

∂2f

∂R2
− 2

R

∂

∂R

(
f

R

)
, (B 6)

enables us to replace the z-derivatives of even orders with R-derivatives:

∇2n
R ψm = (−1)n−1(2n− 3)!!

(
1

R

∂

∂R

)n
ψm for n > 2, (B 7)(

∂2

∂R2
− ∂2

∂z2

)
ψm = 2R2

(
1

R

∂

∂R

)2

ψm +
1

R

∂ψm

∂R
, (B 8)(

∂3

∂R3
− 3

∂3

∂R∂z2

)
ψm = 4R3

(
1

R

∂

∂R

)3

ψm + 9R

(
1

R

∂

∂R

)2

ψm, (B 9)

∂

∂R

(
∂2

∂R2
+

∂2

∂z2

)2

ψm = −R
(

1

R

∂

∂R

)3

ψm, (B 10)

∂

∂z

(
∂2

∂R2
+

∂2

∂z2

)2

ψm = −
(

1

R

∂

∂R

)2
∂ψm

∂z
, (B 11)(

∂2

∂R2
− ∂2

∂z2

)(
∂2

∂R2
+

∂2

∂z2

)
ψm = 2R

(
1

R

∂

∂R

)3

ψm + 3

(
1

R

∂

∂R

)2

ψm. (B 12)
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Rewriting (3.7) using the global cylindrical coordinates,

ρ− R = r cos θ, z − Z = r sin θ, (B 13)

derivatives of ψm in R are calculated with ease to yield

1

R

∂ψm

∂R
= − 1

2π

(
cos θ

r
+

1

2R

[
log

(
8R

r

)
+

cos 2θ

2

]

− r

8R2

{[
log

(
8R

r

)
− 7

4

]
cos θ +

cos 3θ

4

})
+ · · · , (B 14)

(
1

R

∂

∂R

)2

ψm = − 1

2πR

[
cos 2θ

r2
+

1

4Rr
(cos θ + cos 3θ)

]
+ · · · , (B 15)

(
1

R

∂

∂R

)3

ψm = − 1

πR2

cos 3θ

r3
+ · · · , (B 16)

∂ψm

∂z
=

R

2π

(
sin θ

r
+

sin 2θ

4R

)
+ · · · . (B 17)

Substitution of (B 5)–(B 17), together with (3.7) and (3.8), into (3.6) gives rise to (3.10).

Appendix C. Proof of absence of the axisymmetric part of vorticity at first
order and correction to the ring velocity at second order

We prove first that Ṙ(1) = 0 and secondly that ζ(1)
0 = ψ

(1)
0 = 0. Lastly, Ż (1) = 0

is shown. Unlike in Appendix A, we make full use of (2.17), retaining εR(1), and,
in keeping with this, include axisymmetric terms in the expansions for ψ(1) and ζ(1).
Rather than (4.14) and (4.40), we assume the following expansions:

ψ(1) = ψ
(1)
0 + ψ

(1)
11 cos θ, (C 1)

ζ(1) = ζ
(1)
0 + ζ

(1)
11 cos θ, (C 2)

ψ(2) = ψ
(2)
0 + ψ

(2)
11 cos θ + ψ

(2)
12 sin θ + ψ

(2)
21 cos 2θ, (C 3)

ζ(2) = ζ
(2)
0 + ζ

(2)
11 cos θ + ζ

(2)
12 sin θ + ζ

(2)
21 cos 2θ. (C 4)

The vorticity equation (A 4) at O(ε2) is augmented, on its left-hand side, by

−
[(
Ż (1) sin θ + Ṙ(1) cos θ

) ∂ζ(0)

∂r
+
(
Ż (1) cos θ − Ṙ(1) sin θ

) 1

r

∂ζ(0)

∂θ

]
− R(1)

(R(0))2

(
[ζ(1), ψ(0)] + [ζ(0), ψ(1)]

)
+

2R(1)

(R(0))3

∂ψ(0)

∂r
ζ(0) sin θ. (C 5)

This modified version of (A 4) is then integrated in θ once, for the non-axisymmetric
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part, to yield

ζ(2) =
a

R0

ψ(2) +ra
(
Ż (1) cos θ − Ṙ(1) sin θ

)
+

{
ra

R2
0

ψ
(1)
0 +

r

R0

(
ζ

(1)
0 − a

R0

ψ
(1)
0

)

+
1

R2
0v

(0)

(
a
∂ψ

(1)
0

∂r
− R0

∂ζ
(1)
0

∂r

)
(ψ(1)

11 + R0rŻ
(0))

+rṘ(1)

(
a

R0

Ż (0) − ζ(0)

R2
0

)}
cos θ +

{
b

4R2
0

(ψ(1)
11 )2

+
r

2R2
0

(a+ R0bŻ
(0))ψ(1)

11 +
1

4

[
b(Ż (0))2 +

3

R0

aŻ (0)

]
r2

}
cos 2θ. (C 6)

The ζ–ψ relation (A 9) at O(ε2) is augmented, on its right-hand side, by

R(1)

(R(0))3

[
−R(0)∆ψ(1) + 2r cos θ∆ψ(0) + 2

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
ψ(0)

]
. (C 7)

The function ψ
(2)
12 has a bearing on the location of the core in the axial direction

with an accuracy of O(ε2). The equation for ψ(2)
12 is extracted from (C 6) and (A 9)

aided by (C 7) as [
∂2

∂r2
+

1

r

∂

∂r
−
(

1

r2
+ a

)]
ψ

(2)
12 = −R0raṘ

(1), (C 8)

which is constrained by the matching condition

ψ
(2)
12 ∝ 1

r
as r →∞. (C 9)

In effect, the corrections from the R(1)-terms have no influence. A general solution of
(C 8), regular at r = 0, is

ψ
(2)
12 = R0rṘ

(1) + c
(2)
12 v

(0). (C 10)

The matching condition (C 9) then yields

Ṙ(1) = 0, (C 11)

and therefore
R(1) = 0 for all t > 0. (C 12)

The corresponding vorticity is

ζ
(2)
12 = −c

(2)
12

R0

∂ζ(0)

∂r
. (C 13)

Secondly we treat the axisymmetric part of (A 5). Use of (C 11)–(C 13) helps to
simplify this to

∂ζ
(1)
0

∂t
= ν̂

(
∂2

∂r2
+

1

r

∂

∂r

)
ζ

(1)
0 . (C 14)

In the viscous case (ν̂ 6= 0), this is solved with the initial condition

ζ
(1)
0 (r, 0) = 0, (C 15)

giving rise to

ζ
(1)
0 (r, t) = 0 for all t > 0. (C 16)
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In the inviscid case (ν̂ = 0), (C 14) is compatible with an arbitrary steady spatial
distribution of ζ(1)

0 , but this may be judiciously neglected.
The axisymmetric part of (A 8) reads

∆ψ(1)
0 = R0ζ

(1)
0 = 0. (C 17)

This equation implies that ψ(1)
0 is a harmonic function regular on the entire plane,

and therefore
ψ

(1)
0 = const. (C 18)

Setting R(1) = ζ
(1)
0 = 0 and ψ(1)

0 = const., the equation for ψ(2)
11 reduces to[

∂2

∂r2
+

1

r

∂

∂r
−
(

1

r2
+ a

)]
ψ

(2)
11 = aR0rŻ

(1). (C 19)

The matching condition is

ψ
(2)
11 ∝ 1

r
as r →∞. (C 20)

In the same way as above, we find

Ż (1) = 0. (C 21)

Appendix D. Alternative derivation of the third-order radial velocity
We present a brief outline of the derivation of the expansion law (5.6) of the core

radius by means of the matching procedure. Recalling (4.14) with ψ(1)
12 = 0, (4.21) and

(4.40), the cos θ-part of (A 5) is reducible to

1

r

{
∂ζ(0)

∂r
ψ

(3)
12 + v(0) ∂

∂r

[
1

r

∂

∂r

(
rψ

(3)
12

)]}
− R0Ṙ

(2) ∂ζ
(0)

∂r

= R0

{
−∂ζ

(1)
11

∂t
+ ν̂

[(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ζ

(1)
11 +

1

R0

∂ζ(0)

∂r

]}
. (D 1)

The boundary conditions are

ψ
(3)
12 ∝ r as r → 0, (D 2a)

ψ
(3)
12 ∝ 1

r
as r →∞. (D 2b)

As described at the end of § 4.2, we have only to integrate (D 1) with respect to r,
after multiplication by r2, and to take the limit of r → ∞. For this, we make use of
the identity ∫ ∞

0

r2

(
∂2

∂r2
+

1

r

∂

∂r
− 1

r2

)
ζ

(1)
11 dr = 0. (D 3)

The heat-conduction equation (4.2) for ζ(0) with Ṙ(0) = 0 is utilized to simplify the
result in such a way that

ν̂

∫ ∞
0

r2 ∂ζ
(0)

∂r
dr = −1

2

d

dt

∫ ∞
0

ζ(0)r3dr. (D 4)

With the aid of 2π
∫ ∞

0
rζ(0)dr = 1, we are led to

Ṙ(2) =
2π

R0

ḋ(1). (D 5)

In this way, we have arrived at (5.6) again, through a familiar route.
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Appendix E. Necessary formulae to deduce the third-order translation
velocity

The integral formulae appearing in the derivation of (7.16) and (7.17), by integration
of (7.13) supplemented by (7.14) and (7.15), are enumerated in what follows. Some of
these are derivable by turning to the second-order differential equations (4.16), (4.41)
and (4.50), and by partial integration, combined with the corresponding boundary
conditions. The following expressions are valid at very large values of r:∫ r

0

r

{
v(0) ∂

∂r

[
1

r

∂

∂r

(
rψ

(3)
11

)]
+
∂ζ(0)

∂r
ψ

(3)
11

}
dr

= − 3

26π2R2
0

[
log

(
8R0

εr

)
− 7

12

]
r2 +

d(1)

8πR2
0

[
log

(
8R0

εr

)
− 9

4

]
+

R(2)

4π2R0

, (E 1)

∫ r

0

r

{
1

r

(∫ r

0

r′ζ(2)
0 dr′

)
∂

∂r

[
1

r

∂

∂r

(
rψ

(1)
11

)]
− ∂ζ

(2)
0

∂r
ψ

(1)
11

}
dr = 0, (E 2)

because of (3.9),∫ r

0

2r2

R0

(
1

R0

∂ψ(0)

∂r
∆ψ(2)

0 +
∂ψ

(2)
0

∂r
ζ(0) + 2R(2)v(0)ζ(0)

)
dr

= − r2

8πR2
0

log

(
8R0

εr

)
− d(1)

2πR2
0

, (E 3)

−
∫ r

0

rv(0)

R0

(
1

2

∂ψ̃
(2)
21

∂r
+
ψ̃

(2)
21

r

)
dr

=
r2

8πR0

Ż (0) +
r2

26π2R2
0

[
log

(
8R0

εr

)
− 9

4

]
+

d(1)

24πR2
0

+
1

16R2
0

∫ r

0

r2v(0)b(ψ̃(1)
11 )2dr +

1

4R2
0

∫ r

0

r3v(0)aψ̃
(1)
11 dr

+
1

8R2
0

∫ r

0

[
r2v(0)

(
∂ψ̃

(1)
11

∂r
− ψ̃

(1)
11

r

)
+ r3

(
v(0)
)2

+ r4ζ(0)v(0)

]
dr, (E 4)

∫ r

0

{
r

2

(
− ∂ζ

(2)
21

∂r
ψ̃

(1)
11 +

1

R0

aψ̃
(1)
11

∂ψ̃
(2)
21

∂r

)
− rζ(2)

21

∂ψ̃
(1)
11

∂r

+
1

R0

[
∂

∂r
(aψ̃(1)

11 ) + r
∂ζ(0)

∂r

]
rψ̃

(2)
21

}
dr = − 1

2R0

∫ r

0

(2ra+ bψ̃
(1)
11 )rv(0)ψ̃

(2)
21 dr

+
1

4R2
0

∫ r

0

[
ra

(
ψ̃

(1)
11 − r ∂ψ̃

(1)
11

∂r

)
ψ̃

(1)
11 +

b

2

(
ψ̃

(1)
11 − r ∂ψ̃

(1)
11

∂r

)
(ψ̃(1)

11 )2

]
dr, (E 5)

Ż (0)

R0

∫ r

0

(r3ζ(0) − 2r2v(0))dr =
Ż (0)

2πR0

r2, (E 6)
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0

r3
(
v(0)
)2

dr =
r2

8π2
+

∫ r

0

r4ζ(0)v(0)dr, (E 7)∫ r

0

r2ζ(0)ψ̃
(1)
11 dr =

d(1)

4π
− 1

4

∫ r

0

r4ζ(0)v(0)dr. (E 8)
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